{"title":"轴对称区域上Hodge Laplacian问题的高阶傅里叶有限元方法","authors":"Nicole Stock","doi":"10.1137/21s1416813","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a new family of higher order Fourier finite element spaces to discretize the axisymmetric Hodge Laplacian problems. We demonstrate that these new higher order Fourier finite element methods provide improved computational efficiency as well as increased accuracy.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Order Fourier Finite Element Methods for Hodge Laplacian Problems on Axisymmetric Domains\",\"authors\":\"Nicole Stock\",\"doi\":\"10.1137/21s1416813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a new family of higher order Fourier finite element spaces to discretize the axisymmetric Hodge Laplacian problems. We demonstrate that these new higher order Fourier finite element methods provide improved computational efficiency as well as increased accuracy.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21s1416813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21s1416813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher Order Fourier Finite Element Methods for Hodge Laplacian Problems on Axisymmetric Domains
In this paper, we construct a new family of higher order Fourier finite element spaces to discretize the axisymmetric Hodge Laplacian problems. We demonstrate that these new higher order Fourier finite element methods provide improved computational efficiency as well as increased accuracy.