利用SAS PROC mix对层次线性模型进行解秘

IF 2.2 4区 教育学 Q1 Social Sciences
Jianjun Wang
{"title":"利用SAS PROC mix对层次线性模型进行解秘","authors":"Jianjun Wang","doi":"10.1080/00220979709601397","DOIUrl":null,"url":null,"abstract":"Abstract Hierarchical data analyses in different disciplines are reviewed to compare statistical applications of the Hierarchical Linear Model (HLM) software and the SAS MIXED procedure. Similar features of the 2 programs are illustrated through use of the SAS MIXED procedure to confirm an HLM example. The SAS is a standard statistical package with a large group of users; discussions of the shared features in statistical computing may identify options to demystify existing methods for analyzing hierarchical data.","PeriodicalId":47911,"journal":{"name":"Journal of Experimental Education","volume":"66 1","pages":"84-93"},"PeriodicalIF":2.2000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00220979709601397","citationCount":"14","resultStr":"{\"title\":\"Using SAS PROC MIXED To Demystify the Hierarchical Linear Model\",\"authors\":\"Jianjun Wang\",\"doi\":\"10.1080/00220979709601397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hierarchical data analyses in different disciplines are reviewed to compare statistical applications of the Hierarchical Linear Model (HLM) software and the SAS MIXED procedure. Similar features of the 2 programs are illustrated through use of the SAS MIXED procedure to confirm an HLM example. The SAS is a standard statistical package with a large group of users; discussions of the shared features in statistical computing may identify options to demystify existing methods for analyzing hierarchical data.\",\"PeriodicalId\":47911,\"journal\":{\"name\":\"Journal of Experimental Education\",\"volume\":\"66 1\",\"pages\":\"84-93\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00220979709601397\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/00220979709601397\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/00220979709601397","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 14

摘要

摘要综述了不同学科的分层数据分析,比较了分层线性模型(HLM)软件和SAS MIXED程序的统计应用。通过使用SAS mix程序来确认一个HLM实例,说明了这两个程序的相似特性。SAS是一个拥有大量用户的标准统计软件包;对统计计算中共享特征的讨论可以确定各种选项,以消除分析分层数据的现有方法的神秘性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using SAS PROC MIXED To Demystify the Hierarchical Linear Model
Abstract Hierarchical data analyses in different disciplines are reviewed to compare statistical applications of the Hierarchical Linear Model (HLM) software and the SAS MIXED procedure. Similar features of the 2 programs are illustrated through use of the SAS MIXED procedure to confirm an HLM example. The SAS is a standard statistical package with a large group of users; discussions of the shared features in statistical computing may identify options to demystify existing methods for analyzing hierarchical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
25
期刊介绍: The Journal of Experimental Education publishes theoretical, laboratory, and classroom research studies that use the range of quantitative and qualitative methodologies. Recent articles have explored the correlation between test preparation and performance, enhancing students" self-efficacy, the effects of peer collaboration among students, and arguments about statistical significance and effect size reporting. In recent issues, JXE has published examinations of statistical methodologies and editorial practices used in several educational research journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信