行列式环的某些局部上同调模的“无限”性质

IF 0.3 Q4 MATHEMATICS
Peter Schenzel
{"title":"行列式环的某些局部上同调模的“无限”性质","authors":"Peter Schenzel","doi":"10.1007/s40306-021-00459-6","DOIUrl":null,"url":null,"abstract":"<div><p>For given integers <i>m</i>,<i>n</i> ≥ 2 there are examples of ideals <i>I</i> of complete determinantal local rings <span>\\((R,\\mathfrak {m}), \\dim R = m+n-1, \\text {grade}~I = n-1,\\)</span> with the canonical module <i>ω</i><sub><i>R</i></sub> and the property that the socle dimensions of <span>\\(H^{m+n-2}_{I}(\\omega _{R})\\)</span> and <span>\\(H^{m}_{\\mathfrak {m}}\\left (H^{n-1}_{I}(\\omega _{R})\\right )\\)</span> are not finite. In the case of <i>m</i> = <i>n</i>, i.e., a Gorenstein ring, the socle dimensions provide further information about the <i>τ</i>-numbers as studied in Mahmood and Schenzel (<i>J. Algebra</i><b>372</b>, 56–67, 10). Moreover, the endomorphism ring of <span>\\(H^{n-1}_{I}(\\omega _{R})\\)</span> is studied and shown to be an <i>R</i>-algebra of finite type but not finitely generated as <i>R</i>-module generalizing an example of Schenzel (<i>J. Algebra</i> <b>344</b>, 229–245, 15).</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"47 1","pages":"243 - 250"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Infinite” Properties of Certain Local Cohomology Modules of Determinantal Rings\",\"authors\":\"Peter Schenzel\",\"doi\":\"10.1007/s40306-021-00459-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For given integers <i>m</i>,<i>n</i> ≥ 2 there are examples of ideals <i>I</i> of complete determinantal local rings <span>\\\\((R,\\\\mathfrak {m}), \\\\dim R = m+n-1, \\\\text {grade}~I = n-1,\\\\)</span> with the canonical module <i>ω</i><sub><i>R</i></sub> and the property that the socle dimensions of <span>\\\\(H^{m+n-2}_{I}(\\\\omega _{R})\\\\)</span> and <span>\\\\(H^{m}_{\\\\mathfrak {m}}\\\\left (H^{n-1}_{I}(\\\\omega _{R})\\\\right )\\\\)</span> are not finite. In the case of <i>m</i> = <i>n</i>, i.e., a Gorenstein ring, the socle dimensions provide further information about the <i>τ</i>-numbers as studied in Mahmood and Schenzel (<i>J. Algebra</i><b>372</b>, 56–67, 10). Moreover, the endomorphism ring of <span>\\\\(H^{n-1}_{I}(\\\\omega _{R})\\\\)</span> is studied and shown to be an <i>R</i>-algebra of finite type but not finitely generated as <i>R</i>-module generalizing an example of Schenzel (<i>J. Algebra</i> <b>344</b>, 229–245, 15).</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"47 1\",\"pages\":\"243 - 250\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-021-00459-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-021-00459-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的整数m,n≥ 2存在具有正则模ωR的完备行列式局部环((R,\mathfrak{m}),\dim R=m+n-1,\text{grade}~I=n-1,\)的理想I的例子,以及\(H^{m+n-2}_{I}(ω_{R})\)和\(H^{m}_{\mathfrak{m}}\left(H^{n-1}_{I} (ω_{R})\ right)\)不是有限的。在m=n的情况下,即戈伦斯坦环,socle维数提供了关于Mahmood和Schenzel(J.Algebra372,56-67,10)中研究的τ-数的进一步信息。此外,\(H)的自同态环^{n-1}_{I} (ω_{R})\)被研究并证明是有限类型的R代数,但不是有限生成的R模,推广了Schenzel的一个例子(J.algebra 344229–245,15)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
“Infinite” Properties of Certain Local Cohomology Modules of Determinantal Rings

For given integers m,n ≥ 2 there are examples of ideals I of complete determinantal local rings \((R,\mathfrak {m}), \dim R = m+n-1, \text {grade}~I = n-1,\) with the canonical module ωR and the property that the socle dimensions of \(H^{m+n-2}_{I}(\omega _{R})\) and \(H^{m}_{\mathfrak {m}}\left (H^{n-1}_{I}(\omega _{R})\right )\) are not finite. In the case of m = n, i.e., a Gorenstein ring, the socle dimensions provide further information about the τ-numbers as studied in Mahmood and Schenzel (J. Algebra372, 56–67, 10). Moreover, the endomorphism ring of \(H^{n-1}_{I}(\omega _{R})\) is studied and shown to be an R-algebra of finite type but not finitely generated as R-module generalizing an example of Schenzel (J. Algebra 344, 229–245, 15).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信