微重力条件下两相旋流分离器流场的控制体积研究

IF 2.2 3区 工程技术 Q2 MECHANICS
Yeyuan Li, Yasuhiro Kamotani
{"title":"微重力条件下两相旋流分离器流场的控制体积研究","authors":"Yeyuan Li,&nbsp;Yasuhiro Kamotani","doi":"10.1007/s00162-022-00635-w","DOIUrl":null,"url":null,"abstract":"<p>The separation of two-phase flow is essential for many fluid systems in microgravity environments. The passive cyclonic separator is a prominent technology for this task. In the absence of gravity, the separators can operate in different parametric ranges than in normal gravity. The objective of the present investigation is to better understand the fluid physics involved in two-phase flow separation in microgravity by deriving the basic scaling laws for various important parameters. Combined approaches of control-volume analysis and numerical simulations are used to construct a system of equations that can accurately predict the gas core size under various conditions. The predictions are found to be in good agreement with the experimental data, both for pure liquid injection and two-phase flow injection cases. The control-volume equations are modified to include capillary effects and predict the critical condition for the collapse of the liquid layer in microgravity as the surface tension overcomes the centrifugal acceleration at the interface. It is shown that the results of the control-volume analysis can also be used to construct the operational map and to study the separation of a single bubble in microgravity.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 1","pages":"105 - 127"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control-volume study of flow field in a two-phase cyclonic separator in microgravity\",\"authors\":\"Yeyuan Li,&nbsp;Yasuhiro Kamotani\",\"doi\":\"10.1007/s00162-022-00635-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The separation of two-phase flow is essential for many fluid systems in microgravity environments. The passive cyclonic separator is a prominent technology for this task. In the absence of gravity, the separators can operate in different parametric ranges than in normal gravity. The objective of the present investigation is to better understand the fluid physics involved in two-phase flow separation in microgravity by deriving the basic scaling laws for various important parameters. Combined approaches of control-volume analysis and numerical simulations are used to construct a system of equations that can accurately predict the gas core size under various conditions. The predictions are found to be in good agreement with the experimental data, both for pure liquid injection and two-phase flow injection cases. The control-volume equations are modified to include capillary effects and predict the critical condition for the collapse of the liquid layer in microgravity as the surface tension overcomes the centrifugal acceleration at the interface. It is shown that the results of the control-volume analysis can also be used to construct the operational map and to study the separation of a single bubble in microgravity.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 1\",\"pages\":\"105 - 127\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-022-00635-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-022-00635-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在微重力环境下,两相流的分离对许多流体系统都是必不可少的。被动旋流分离器是这项任务的突出技术。在没有重力的情况下,分离器可以在不同的参数范围内工作,而不是在正常重力下。本研究的目的是通过推导各种重要参数的基本标度定律来更好地理解微重力下两相流分离的流体物理。采用控制体积分析和数值模拟相结合的方法,建立了一个能够准确预测各种条件下气体岩心尺寸的方程系统。在纯液注入和两相流注入情况下,预测结果与实验数据吻合较好。对控制体积方程进行了修正,加入了毛细效应,并预测了微重力下表面张力超过界面离心加速度时液体层坍塌的临界条件。结果表明,控制体积分析的结果也可用于构建操作图和研究微重力下单个气泡的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Control-volume study of flow field in a two-phase cyclonic separator in microgravity

Control-volume study of flow field in a two-phase cyclonic separator in microgravity

The separation of two-phase flow is essential for many fluid systems in microgravity environments. The passive cyclonic separator is a prominent technology for this task. In the absence of gravity, the separators can operate in different parametric ranges than in normal gravity. The objective of the present investigation is to better understand the fluid physics involved in two-phase flow separation in microgravity by deriving the basic scaling laws for various important parameters. Combined approaches of control-volume analysis and numerical simulations are used to construct a system of equations that can accurately predict the gas core size under various conditions. The predictions are found to be in good agreement with the experimental data, both for pure liquid injection and two-phase flow injection cases. The control-volume equations are modified to include capillary effects and predict the critical condition for the collapse of the liquid layer in microgravity as the surface tension overcomes the centrifugal acceleration at the interface. It is shown that the results of the control-volume analysis can also be used to construct the operational map and to study the separation of a single bubble in microgravity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信