Deadwood的Necrobiome:死后的生命

IF 1.7 Q3 ECOLOGY
Ecologies Pub Date : 2022-12-22 DOI:10.3390/ecologies4010003
R. Pastorelli, I. De Meo, A. Lagomarsino
{"title":"Deadwood的Necrobiome:死后的生命","authors":"R. Pastorelli, I. De Meo, A. Lagomarsino","doi":"10.3390/ecologies4010003","DOIUrl":null,"url":null,"abstract":"In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Necrobiome of Deadwood: The Life after Death\",\"authors\":\"R. Pastorelli, I. De Meo, A. Lagomarsino\",\"doi\":\"10.3390/ecologies4010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.\",\"PeriodicalId\":72866,\"journal\":{\"name\":\"Ecologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecologies4010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecologies4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

近几十年来,可持续森林管理得到了越来越多的认可,促进了旨在考虑森林系统所有组成部分的造林做法的传播。枯木是森林生态系统的重要组成部分。它在为各种腐生和异养生物提供营养和栖息地方面发挥着重要作用,并对土壤形成和碳储存做出了重大贡献。枯木居住着大量来自不同王国的生物,这些生物已经进化出利用腐烂有机物的能力。这个由真核生物和原核生物组成的群落可以被定义为“坏死生物群落”。通过其不同成员之间的相互作用,坏死生物群落影响枯木的腐烂速率,并在有机物分解、碳固存和与大气的气体交换(如CO2)之间的平衡中发挥着至关重要的作用。本工作旨在概述枯木中微生物群落的生物多样性和作用,以及它们可能参与温室气体(CO2、N2O和CH4)排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Necrobiome of Deadwood: The Life after Death
In recent decades, sustainable forest management has been increasingly recognized, promoting the diffusion of silvicultural practices aimed at considering all components of the forest system. Deadwood is an important component of the forest ecosystem. It plays a fundamental role in providing nutrients and habitats for a wide variety of saprotrophic and heterotrophic organisms and significantly contributes to soil formation and carbon storage. Deadwood is inhabited by a plethora of organisms from various kingdoms that have evolved the ability to utilize decaying organic matter. This community, consisting of both eukaryotic and prokaryotic species, can be defined as “necrobiome”. Through the interactions between its various members, the necrobiome influences the decay rates of deadwood and plays a crucial role in the balance between organic matter decomposition, carbon sequestration, and gas exchanges (e.g., CO2) with the atmosphere. The present work aims to provide an overview of the biodiversity and role of the microbial communities that inhabit deadwood and their possible involvement in greenhouse gas (CO2, N2O, and CH4) emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信