循环格和全面格

Q4 Mathematics
L. Fukshansky, David Kogan
{"title":"循环格和全面格","authors":"L. Fukshansky, David Kogan","doi":"10.2140/moscow.2022.11.79","DOIUrl":null,"url":null,"abstract":"We focus on two important classes of lattices, the well-rounded and the cyclic. We show that every well-rounded lattice in the plane is similar to a cyclic lattice, and use this cyclic parameterization to count planar wellrounded similarity classes defined over a fixed number field with respect to height. We then investigate cyclic properties of the irreducible root lattices in arbitrary dimensions, in particular classifying those that are simple cyclic, i.e. generated by rotation shifts of a single vector. Finally, we classify cyclic, simple cyclic and well-rounded cyclic lattices coming from rings of integers of Galois algebraic number fields.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclic and well-rounded lattices\",\"authors\":\"L. Fukshansky, David Kogan\",\"doi\":\"10.2140/moscow.2022.11.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on two important classes of lattices, the well-rounded and the cyclic. We show that every well-rounded lattice in the plane is similar to a cyclic lattice, and use this cyclic parameterization to count planar wellrounded similarity classes defined over a fixed number field with respect to height. We then investigate cyclic properties of the irreducible root lattices in arbitrary dimensions, in particular classifying those that are simple cyclic, i.e. generated by rotation shifts of a single vector. Finally, we classify cyclic, simple cyclic and well-rounded cyclic lattices coming from rings of integers of Galois algebraic number fields.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2022.11.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2022.11.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们关注两类重要的格,圆格和环格。我们证明了平面上的每一个圆角格都类似于一个循环格,并使用这个循环参数化来计算平面圆角格的相似类,这些相似类定义在一个固定数量的场上,相对于高度。然后,我们研究了任意维不可约根格的循环性质,特别是对那些简单循环的根格进行了分类,即由单个向量的旋转位移产生的根格。最后,我们对来自伽罗瓦代数数域整数环的循环格、简单循环格和良圆循环格进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic and well-rounded lattices
We focus on two important classes of lattices, the well-rounded and the cyclic. We show that every well-rounded lattice in the plane is similar to a cyclic lattice, and use this cyclic parameterization to count planar wellrounded similarity classes defined over a fixed number field with respect to height. We then investigate cyclic properties of the irreducible root lattices in arbitrary dimensions, in particular classifying those that are simple cyclic, i.e. generated by rotation shifts of a single vector. Finally, we classify cyclic, simple cyclic and well-rounded cyclic lattices coming from rings of integers of Galois algebraic number fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信