Yuta Katsumi, Jordan E Theriault, Karen S Quigley, Lisa Feldman Barrett
{"title":"异稳态是人脑分层梯度的核心特征","authors":"Yuta Katsumi, Jordan E Theriault, Karen S Quigley, Lisa Feldman Barrett","doi":"10.1162/netn_a_00240","DOIUrl":null,"url":null,"abstract":"<p><p>This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called <i>allostasis</i> (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"6 1","pages":"1010-1031"},"PeriodicalIF":3.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Allostasis as a core feature of hierarchical gradients in the human brain.\",\"authors\":\"Yuta Katsumi, Jordan E Theriault, Karen S Quigley, Lisa Feldman Barrett\",\"doi\":\"10.1162/netn_a_00240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called <i>allostasis</i> (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"6 1\",\"pages\":\"1010-1031\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00240\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00240","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Allostasis as a core feature of hierarchical gradients in the human brain.
This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called allostasis (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.