IFS分形上Diophantine近似的改进收敛情形

Q4 Mathematics
Itamar Cohen-Matalon
{"title":"IFS分形上Diophantine近似的改进收敛情形","authors":"Itamar Cohen-Matalon","doi":"10.2140/moscow.2023.12.97","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to (partially) address the issue of finding an analogue to Khintchine's theorem for IFS Fractals. We study the convergence case for Diophantine approximations, and show an improved result for higher dimensions. This matter has been previously studied by Pollington and Velani in arXiv:math/0401149. Pollington and Velani show a similar result to the one in this paper (a Khinchine convergence case) and we shall show how our result is an improvement in the higher dimensional cases.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved convergence case for Diophantine approximations on IFS fractals\",\"authors\":\"Itamar Cohen-Matalon\",\"doi\":\"10.2140/moscow.2023.12.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to (partially) address the issue of finding an analogue to Khintchine's theorem for IFS Fractals. We study the convergence case for Diophantine approximations, and show an improved result for higher dimensions. This matter has been previously studied by Pollington and Velani in arXiv:math/0401149. Pollington and Velani show a similar result to the one in this paper (a Khinchine convergence case) and we shall show how our result is an improvement in the higher dimensional cases.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2023.12.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2023.12.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是(部分)解决寻找IFS分形的Khintchine定理的类似物的问题。我们研究了丢番图近似的收敛情况,并给出了高维的改进结果。Pollington和Velani之前在arXiv:math/0401149中对此事进行了研究。Pollington和Velani给出了与本文相似的结果(Khinchine收敛情况),我们将展示我们的结果如何在高维情况下得到改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved convergence case for Diophantine approximations on IFS fractals
The objective of this paper is to (partially) address the issue of finding an analogue to Khintchine's theorem for IFS Fractals. We study the convergence case for Diophantine approximations, and show an improved result for higher dimensions. This matter has been previously studied by Pollington and Velani in arXiv:math/0401149. Pollington and Velani show a similar result to the one in this paper (a Khinchine convergence case) and we shall show how our result is an improvement in the higher dimensional cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信