关于稀疏完全幂

Q4 Mathematics
A. Moscariello
{"title":"关于稀疏完全幂","authors":"A. Moscariello","doi":"10.2140/moscow.2021.10.261","DOIUrl":null,"url":null,"abstract":"This work is devoted to proving that, given an integer x ≥ 2, there are infinitely many perfect powers, coprime with x, having exactly k ≥ 3 non-zero digits in their base x representation, except for the case x = 2, k = 4, for which a known finiteness result by Corvaja and Zannier holds. Introduction Let k and x be positive integers, with x ≥ 2. In this work, we will study perfect powers having exactly k non-zero digits in their representation in a given basis x. These perfect powers are exactly (up to dividing by a suitable factor) the set solutions of the Diophantine equation (1) y = c0 + k−1","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On sparse perfect powers\",\"authors\":\"A. Moscariello\",\"doi\":\"10.2140/moscow.2021.10.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to proving that, given an integer x ≥ 2, there are infinitely many perfect powers, coprime with x, having exactly k ≥ 3 non-zero digits in their base x representation, except for the case x = 2, k = 4, for which a known finiteness result by Corvaja and Zannier holds. Introduction Let k and x be positive integers, with x ≥ 2. In this work, we will study perfect powers having exactly k non-zero digits in their representation in a given basis x. These perfect powers are exactly (up to dividing by a suitable factor) the set solutions of the Diophantine equation (1) y = c0 + k−1\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本工作致力于证明,给定一个整数x≥2,存在无穷多个完备幂与x的协素数,在其基底x表示中恰好有k≥3个非零数字,除了x = 2, k = 4的情况,因为在这种情况下,Corvaja和Zannier给出了一个已知的有限结果。设k、x为正整数,且x≥2。在这项工作中,我们将研究在给定的基x中具有恰好k个非零数字的完全幂。这些完全幂正是(直到除以一个合适的因子)丢芬图恩方程(1)y = c0 + k−1的集合解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sparse perfect powers
This work is devoted to proving that, given an integer x ≥ 2, there are infinitely many perfect powers, coprime with x, having exactly k ≥ 3 non-zero digits in their base x representation, except for the case x = 2, k = 4, for which a known finiteness result by Corvaja and Zannier holds. Introduction Let k and x be positive integers, with x ≥ 2. In this work, we will study perfect powers having exactly k non-zero digits in their representation in a given basis x. These perfect powers are exactly (up to dividing by a suitable factor) the set solutions of the Diophantine equation (1) y = c0 + k−1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信