关于任意范数的Dirichlet可改进对的丰富性

Q4 Mathematics
D. Kleinbock, Anurag Rao
{"title":"关于任意范数的Dirichlet可改进对的丰富性","authors":"D. Kleinbock, Anurag Rao","doi":"10.2140/moscow.2022.11.97","DOIUrl":null,"url":null,"abstract":"In a recent paper of Akhunzhanov and Shatskov the two-dimensional Dirichlet spectrum with respect to Euclidean norm was defined. We consider an analogous definition for arbitrary norms on $\\mathbb{R}^2$ and prove that, for each such norm, the set of Dirichlet improvable pairs contains the set of badly approximable pairs, hence is hyperplane absolute winning. To prove this we make a careful study of some classical results in the geometry of numbers due to Chalk--Rogers and Mahler to establish a Haj\\'{o}s--Minkowski type result for the critical locus of a cylinder. As a corollary, using a recent result of the first named author with Mirzadeh, we conclude that for any norm on $\\mathbb{R}^2$ the top of the Dirichlet spectrum is not an isolated point.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Abundance of Dirichlet-improvable pairs with respect to arbitrary norms\",\"authors\":\"D. Kleinbock, Anurag Rao\",\"doi\":\"10.2140/moscow.2022.11.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent paper of Akhunzhanov and Shatskov the two-dimensional Dirichlet spectrum with respect to Euclidean norm was defined. We consider an analogous definition for arbitrary norms on $\\\\mathbb{R}^2$ and prove that, for each such norm, the set of Dirichlet improvable pairs contains the set of badly approximable pairs, hence is hyperplane absolute winning. To prove this we make a careful study of some classical results in the geometry of numbers due to Chalk--Rogers and Mahler to establish a Haj\\\\'{o}s--Minkowski type result for the critical locus of a cylinder. As a corollary, using a recent result of the first named author with Mirzadeh, we conclude that for any norm on $\\\\mathbb{R}^2$ the top of the Dirichlet spectrum is not an isolated point.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2022.11.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2022.11.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

在Akhunzhanov和Shatskov最近的一篇论文中,定义了关于欧几里得范数的二维狄利克雷谱。我们考虑了$\mathbb{R}^2$上任意范数的类似定义,并证明了对于每一个这样的范数,Dirichlet可改进对的集合包含坏逼近对的集合,因此是超平面绝对胜利。为了证明这一点,我们仔细研究了粉笔-罗杰斯和马勒在数几何中的一些经典结果,建立了圆柱临界轨迹的Haj\ {o}s- Minkowski型结果。作为一个推论,我们利用第一个作者和Mirzadeh最近的一个结果,我们得出结论,对于$\mathbb{R}^2$上的任何范数,狄利克雷谱的顶端不是一个孤立点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abundance of Dirichlet-improvable pairs with respect to arbitrary norms
In a recent paper of Akhunzhanov and Shatskov the two-dimensional Dirichlet spectrum with respect to Euclidean norm was defined. We consider an analogous definition for arbitrary norms on $\mathbb{R}^2$ and prove that, for each such norm, the set of Dirichlet improvable pairs contains the set of badly approximable pairs, hence is hyperplane absolute winning. To prove this we make a careful study of some classical results in the geometry of numbers due to Chalk--Rogers and Mahler to establish a Haj\'{o}s--Minkowski type result for the critical locus of a cylinder. As a corollary, using a recent result of the first named author with Mirzadeh, we conclude that for any norm on $\mathbb{R}^2$ the top of the Dirichlet spectrum is not an isolated point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信