噪声相位恢复中基于强度估计器的性能边界

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Meng Huang , Zhiqiang Xu
{"title":"噪声相位恢复中基于强度估计器的性能边界","authors":"Meng Huang ,&nbsp;Zhiqiang Xu","doi":"10.1016/j.acha.2023.101584","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of noisy phase retrieval is to estimate a signal <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> from <em>m</em> noisy intensity measurements <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are known measurement vectors and <span><math><mi>η</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a noise vector. A commonly used estimator for <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is to minimize the intensity-based loss function, i.e., <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><msub><mrow><mtext>argmin</mtext></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>θ</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>≲</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>⋅</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></mfrac><mo>}</mo></math></span> under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, being complex Gaussian random vectors. We also show that the error bound is rate optimal when <span><math><mi>m</mi><mo>≳</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>m</mi></math></span>. In the case where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>s</em>-sparse signal, we present a similar result under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>s</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mi>d</mi><mo>/</mo><mi>s</mi><mo>)</mo></math></span>. To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101584"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance bounds of the intensity-based estimators for noisy phase retrieval\",\"authors\":\"Meng Huang ,&nbsp;Zhiqiang Xu\",\"doi\":\"10.1016/j.acha.2023.101584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of noisy phase retrieval is to estimate a signal <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> from <em>m</em> noisy intensity measurements <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are known measurement vectors and <span><math><mi>η</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a noise vector. A commonly used estimator for <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is to minimize the intensity-based loss function, i.e., <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><msub><mrow><mtext>argmin</mtext></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>θ</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>≲</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>⋅</mo><msqrt><mrow><mi>m</mi></mrow></msqrt></mrow></mfrac><mo>}</mo></math></span> under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>d</mi></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, being complex Gaussian random vectors. We also show that the error bound is rate optimal when <span><math><mi>m</mi><mo>≳</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>m</mi></math></span>. In the case where <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is an <em>s</em>-sparse signal, we present a similar result under the assumption of <span><math><mi>m</mi><mo>≳</mo><mi>s</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mi>d</mi><mo>/</mo><mi>s</mi><mo>)</mo></math></span>. To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101584\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000714\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000714","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

噪声相位恢复的目的是从m个噪声强度测量值中估计信号x0∈Cd bj=| < aj,x0 > |2+ηj,j=1,…,m,其中aj∈Cd是已知的测量向量,η =(η1,…,ηm)∈Rm是噪声向量。x0的一个常用估计量是最小化基于强度的损失函数,即x:=argminx∈Cd∑j=1m(| < aj,x > |2 - bj)2。虽然已经开发了许多求解基于强度的估计器的算法,但关于其估计性能的结果很少。在本文中,我们重点研究了基于强度的估计器的性能,并证明了误差界满足在m≥d和aj∈Cd,j=1,…,m为复高斯随机向量的假设下,minθ∈R∈‖x φ−eiθx0‖2≤min∈{‖η‖2m1/4,‖η‖2‖x0‖2⋅m}。我们还证明了误差界在m≤log²m时是率最优的。在x0是s-稀疏信号的情况下,我们在m±slog (ed/s)的假设下给出了类似的结果。据我们所知,我们的结果为基于强度的估计器及其稀疏版本提供了第一个理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance bounds of the intensity-based estimators for noisy phase retrieval

The aim of noisy phase retrieval is to estimate a signal x0Cd from m noisy intensity measurements bj=|aj,x0|2+ηj,j=1,,m, where ajCd are known measurement vectors and η=(η1,,ηm)Rm is a noise vector. A commonly used estimator for x0 is to minimize the intensity-based loss function, i.e., xˆ:=argminxCdj=1m(|aj,x|2bj)2. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies minθRxˆeiθx02min{η2m1/4,η2x02m} under the assumption of md and ajCd,j=1,,m, being complex Gaussian random vectors. We also show that the error bound is rate optimal when mdlogm. In the case where x0 is an s-sparse signal, we present a similar result under the assumption of mslog(ed/s). To the best of our knowledge, our results provide the first theoretical guarantees for both the intensity-based estimator and its sparse version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信