里德伯原子中双色电诱导透明的微波电测量

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Mingzhi Han, He Hao, Xiaoyun Song, Zheng Yin, Michal Parniak, Zhengmao Jia, Yandong Peng
{"title":"里德伯原子中双色电诱导透明的微波电测量","authors":"Mingzhi Han,&nbsp;He Hao,&nbsp;Xiaoyun Song,&nbsp;Zheng Yin,&nbsp;Michal Parniak,&nbsp;Zhengmao Jia,&nbsp;Yandong Peng","doi":"10.1140/epjqt/s40507-023-00184-z","DOIUrl":null,"url":null,"abstract":"<div><p>A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the spectral resolution could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00184-z","citationCount":"0","resultStr":"{\"title\":\"Microwave electrometry with bichromatic electromagnetically induced transparency in Rydberg atoms\",\"authors\":\"Mingzhi Han,&nbsp;He Hao,&nbsp;Xiaoyun Song,&nbsp;Zheng Yin,&nbsp;Michal Parniak,&nbsp;Zhengmao Jia,&nbsp;Yandong Peng\",\"doi\":\"10.1140/epjqt/s40507-023-00184-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the spectral resolution could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00184-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-023-00184-z\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00184-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于里德伯原子双色电致透明(EIT)的微波电场测量方案。双色控制场驱动激发态跃迁,其吸收显示三个EIT窗口。当一个MW场驱动Rydberg跃迁时,EIT窗口分裂并出现六个透射峰。有趣的是,透射谱的峰间距离对毫瓦场强很敏感,可以用来测量毫瓦场强。仿真结果表明,与普通EIT方案相比,该方案的光谱分辨率提高了约4倍,毫瓦电场的最小可探测强度提高了约3倍。经多普勒平均后,可探测到的最小毫瓦电场强度约为无多普勒效应时的5倍。此外,我们还研究了对系统灵敏度的其他影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave electrometry with bichromatic electromagnetically induced transparency in Rydberg atoms

A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the spectral resolution could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信