用UltraScan系统去除分析性超离心数据中的噪声

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Saeed Mortezazadeh, Borries Demeler
{"title":"用UltraScan系统去除分析性超离心数据中的噪声","authors":"Saeed Mortezazadeh,&nbsp;Borries Demeler","doi":"10.1007/s00249-023-01631-6","DOIUrl":null,"url":null,"abstract":"<div><p>A method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 4-5","pages":"203 - 213"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01631-6.pdf","citationCount":"3","resultStr":"{\"title\":\"Systematic noise removal from analytical ultracentrifugation data with UltraScan\",\"authors\":\"Saeed Mortezazadeh,&nbsp;Borries Demeler\",\"doi\":\"10.1007/s00249-023-01631-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 4-5\",\"pages\":\"203 - 213\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00249-023-01631-6.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-023-01631-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01631-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种在分析型超离心机中去除沉降速度和沉降平衡实验中时间和径向不变性噪声的方法。该方法将重复径向入射光测量作为不同波长光电倍增管响应的函数进行平均,以消除强度数据测量中的大部分时不变噪声贡献。将该方法的结果与使用缓冲参考和Beckman Optima AUC数据采集程序生成的传统吸光度数据以及标准UltraScan精化工作流程进行了比较。该方法避免了传统上用于沉降速度和平衡数据的吸光度扫描减法所固有的随机噪声的放大。此外,强度数据的收集释放了额外样品的参考通道,使仪器的容量增加了一倍。与吸光度数据相比,使用新方法时,未经UltraScan额外噪声校正的拟合沉降速度实验的残差均方差提高了4.5倍。这种改进有利于沉降平衡实验以及分析浮力密度平衡实验,因为常规的时不变噪声校正计算无法进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Systematic noise removal from analytical ultracentrifugation data with UltraScan

Systematic noise removal from analytical ultracentrifugation data with UltraScan

A method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信