改进了超几何函数中有效无理性测度的常数

Q4 Mathematics
P. Voutier
{"title":"改进了超几何函数中有效无理性测度的常数","authors":"P. Voutier","doi":"10.2140/moscow.2022.11.161","DOIUrl":null,"url":null,"abstract":". In this paper, we simplify and improve the constant, c , that appears in effective irrationality measures, | ( a/b ) m/n − p/q | > c | q | − ( κ +1) , obtained from the hypergeometric method for a/b near 1. The dependence of c on both | a | in our result is best possible (as is the dependence on n in many cases). For some applications, the dependence of this constant on | a | becomes important. We also establish some new inequalities for hypergeometric functions that are useful in other diophantine settings.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved constants for effective irrationality measures from hypergeometric functions\",\"authors\":\"P. Voutier\",\"doi\":\"10.2140/moscow.2022.11.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we simplify and improve the constant, c , that appears in effective irrationality measures, | ( a/b ) m/n − p/q | > c | q | − ( κ +1) , obtained from the hypergeometric method for a/b near 1. The dependence of c on both | a | in our result is best possible (as is the dependence on n in many cases). For some applications, the dependence of this constant on | a | becomes important. We also establish some new inequalities for hypergeometric functions that are useful in other diophantine settings.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2022.11.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2022.11.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们简化和改进了有效非理性测度中出现的常数c,|(a/b)m/n−p/q|>c|q|−(κ+1),该常数是从a/b接近1的超几何方法获得的。在我们的结果中,c对|a|的依赖性是最好的(在许多情况下对n的依赖性也是如此)。对于某些应用程序,这个常数对|a|的依赖性变得很重要。我们还为超几何函数建立了一些新的不等式,这些不等式在其他丢番图设置中很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved constants for effective irrationality measures from hypergeometric functions
. In this paper, we simplify and improve the constant, c , that appears in effective irrationality measures, | ( a/b ) m/n − p/q | > c | q | − ( κ +1) , obtained from the hypergeometric method for a/b near 1. The dependence of c on both | a | in our result is best possible (as is the dependence on n in many cases). For some applications, the dependence of this constant on | a | becomes important. We also establish some new inequalities for hypergeometric functions that are useful in other diophantine settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信