{"title":"还原氧化石墨烯杂化对ZnO纳米粒子对NO2气体敏感性的影响:DFT研究","authors":"M. A. Abdulsattar, M. Hussein, M. Kahaly","doi":"10.15251/jor.2023.192.153","DOIUrl":null,"url":null,"abstract":"In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can be used to attract oxygen atoms from NO2 and change the resistivity of the hybrid. The combined reduction of oxygen from NO2 and NO can give a very high value of the Gibbs free energy of reaction that explains the ppb level sensitivity of the ZnO/rGO hybrid. The dissociation of NO2 in the air reduces the sensitivity of the ZnO/rGO hybrid at temperatures higher than 300 ̊C.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of reduced graphene oxide hybridization on ZnO nanoparticles sensitivity to NO2 gas: A DFT study\",\"authors\":\"M. A. Abdulsattar, M. Hussein, M. Kahaly\",\"doi\":\"10.15251/jor.2023.192.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can be used to attract oxygen atoms from NO2 and change the resistivity of the hybrid. The combined reduction of oxygen from NO2 and NO can give a very high value of the Gibbs free energy of reaction that explains the ppb level sensitivity of the ZnO/rGO hybrid. The dissociation of NO2 in the air reduces the sensitivity of the ZnO/rGO hybrid at temperatures higher than 300 ̊C.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2023.192.153\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2023.192.153","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of reduced graphene oxide hybridization on ZnO nanoparticles sensitivity to NO2 gas: A DFT study
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can be used to attract oxygen atoms from NO2 and change the resistivity of the hybrid. The combined reduction of oxygen from NO2 and NO can give a very high value of the Gibbs free energy of reaction that explains the ppb level sensitivity of the ZnO/rGO hybrid. The dissociation of NO2 in the air reduces the sensitivity of the ZnO/rGO hybrid at temperatures higher than 300 ̊C.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.