关于由关系式(x+yi)n=Rn(x,y)+Jn(x、y)i定义的二进制形式表示整数

Q4 Mathematics
A. Mosunov
{"title":"关于由关系式(x+yi)n=Rn(x,y)+Jn(x、y)i定义的二进制形式表示整数","authors":"A. Mosunov","doi":"10.2140/moscow.2022.11.71","DOIUrl":null,"url":null,"abstract":"Let F be a binary form with integer coefficients, degree d ≥ 3 and nonzero discriminant. Let RF (Z) denote the number of integers of absolute value at most Z which are represented by F . In 2019 Stewart and Xiao proved that RF (Z) ∼ CFZ 2/d for some positive number CF . We compute CRn and CJn for the binary forms Rn(x, y) and Jn(x, y) defined by means of the relation (x+ yi) = Rn(x, y) + Jn(x, y)i, where the variables x and y are real.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the representation of integers by binary\\nforms defined by means of the relation (x + yi)n= Rn(x,y) + Jn(x,y)i\",\"authors\":\"A. Mosunov\",\"doi\":\"10.2140/moscow.2022.11.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a binary form with integer coefficients, degree d ≥ 3 and nonzero discriminant. Let RF (Z) denote the number of integers of absolute value at most Z which are represented by F . In 2019 Stewart and Xiao proved that RF (Z) ∼ CFZ 2/d for some positive number CF . We compute CRn and CJn for the binary forms Rn(x, y) and Jn(x, y) defined by means of the relation (x+ yi) = Rn(x, y) + Jn(x, y)i, where the variables x and y are real.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2022.11.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2022.11.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设F是一个具有整数系数、d≥3阶和非零判别式的二元形式。设RF(Z)表示由F表示的绝对值至多为Z的整数的数目。2019年,Stewart和Xiao证明了RF(Z)~CFZ 2/d对于一些正数CF。我们计算通过关系式(x+yi)=Rn(x,y)+Jn(x、y)i定义的二元形式Rn(x,y)和Jn(x、y)的CRn和CJn,其中变量x和y是实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the representation of integers by binary forms defined by means of the relation (x + yi)n= Rn(x,y) + Jn(x,y)i
Let F be a binary form with integer coefficients, degree d ≥ 3 and nonzero discriminant. Let RF (Z) denote the number of integers of absolute value at most Z which are represented by F . In 2019 Stewart and Xiao proved that RF (Z) ∼ CFZ 2/d for some positive number CF . We compute CRn and CJn for the binary forms Rn(x, y) and Jn(x, y) defined by means of the relation (x+ yi) = Rn(x, y) + Jn(x, y)i, where the variables x and y are real.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信