Gabor框架算子的双重预处理:代数、泛函解析和数值方面

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Hans G. Feichtinger , Peter Balazs , Daniel Haider
{"title":"Gabor框架算子的双重预处理:代数、泛函解析和数值方面","authors":"Hans G. Feichtinger ,&nbsp;Peter Balazs ,&nbsp;Daniel Haider","doi":"10.1016/j.acha.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra </span><span><math><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>,</mo><msub><mrow><mo>‖</mo><mtext> ⋅ </mtext><mo>‖</mo></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>)</mo></math></span> and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 101-137"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double preconditioning for Gabor frame operators: Algebraic, functional analytic and numerical aspects\",\"authors\":\"Hans G. Feichtinger ,&nbsp;Peter Balazs ,&nbsp;Daniel Haider\",\"doi\":\"10.1016/j.acha.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra </span><span><math><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>,</mo><msub><mrow><mo>‖</mo><mtext> ⋅ </mtext><mo>‖</mo></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>)</mo></math></span> and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"66 \",\"pages\":\"Pages 101-137\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000295\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000295","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了代数的、解析的以及数值的论证,为什么以及如何对Gabor框架算子进行双重预处理,从而产生一种有效的方法来计算给定时频晶格的近似对偶(分别是紧的)Gabor原子。我们利用基于Segal代数(S0(Rd),‖ ⋅ ‖S0)的所谓的Banach Gelfand三重,将该方法的定义扩展到连续设置,并展示了双预处理算子对其参数的连续依赖性。推广允许研究两个主要的单预条件(对角和卷积)的顺序的影响。在应用部分,我们展示了在所有可能的格上的双重预处理的质量,并使该方法适应于近似正则紧Gabor窗口,这产生了在ofdm应用中使用的fab -方法的重要推广。最后,我们证明了我们的方法提供了一种有效地计算Gabor族的近似对偶族的方法,这些家族是由缓慢变化的图案而不是规则晶格产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double preconditioning for Gabor frame operators: Algebraic, functional analytic and numerical aspects

This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra (S0(Rd), ⋅ S0) and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信