时变动力系统稳定性新准则:在弹簧-质量-阻尼器模型中的应用

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ezzine Faten, Mohamed Ali Hammami
{"title":"时变动力系统稳定性新准则:在弹簧-质量-阻尼器模型中的应用","authors":"Ezzine Faten,&nbsp;Mohamed Ali Hammami","doi":"10.1016/S0034-4877(23)00007-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the problem of stability with respect to a part of variables of nonlinear time-varying systems. We derive some sufficient conditions that guarantee exponential stability and practical exponential stability with respect to a part of the variables of perturbed systems based on Lyapunov techniques where converse theorems are stated. Furthermore, illustrative examples to show the usefulness and applicability of the theory of stability with respect to a part of variables are provided. In particular, we show that our approach can be applied to the spring-mass-damper model.</p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"91 1","pages":"Pages 1-28"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEW CRITERION OF STABILITY FOR TIME-VARYING DYNAMICAL SYSTEMS: APPLICATION TO SPRING-MASS-DAMPER MODEL\",\"authors\":\"Ezzine Faten,&nbsp;Mohamed Ali Hammami\",\"doi\":\"10.1016/S0034-4877(23)00007-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the problem of stability with respect to a part of variables of nonlinear time-varying systems. We derive some sufficient conditions that guarantee exponential stability and practical exponential stability with respect to a part of the variables of perturbed systems based on Lyapunov techniques where converse theorems are stated. Furthermore, illustrative examples to show the usefulness and applicability of the theory of stability with respect to a part of variables are provided. In particular, we show that our approach can be applied to the spring-mass-damper model.</p></div>\",\"PeriodicalId\":49630,\"journal\":{\"name\":\"Reports on Mathematical Physics\",\"volume\":\"91 1\",\"pages\":\"Pages 1-28\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034487723000071\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487723000071","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类非线性时变系统关于部分变量的稳定性问题。基于李雅普诺夫技术,给出了摄动系统部分变量指数稳定和实际指数稳定的充分条件,并给出了逆定理。此外,还提供了一些例子来说明稳定性理论对于部分变量的有用性和适用性。特别地,我们证明了我们的方法可以应用于弹簧-质量-阻尼器模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEW CRITERION OF STABILITY FOR TIME-VARYING DYNAMICAL SYSTEMS: APPLICATION TO SPRING-MASS-DAMPER MODEL

In this paper, we investigate the problem of stability with respect to a part of variables of nonlinear time-varying systems. We derive some sufficient conditions that guarantee exponential stability and practical exponential stability with respect to a part of the variables of perturbed systems based on Lyapunov techniques where converse theorems are stated. Furthermore, illustrative examples to show the usefulness and applicability of the theory of stability with respect to a part of variables are provided. In particular, we show that our approach can be applied to the spring-mass-damper model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信