Gökhan Özokan, Derya Cansız, Abdulkerim Bilginer, İsmail Ünal, Merih Beler, A Ata Alturfan, Ebru Emekli-Alturfan
{"title":"用绿色化学法从冬绿油中合成水杨酸克服了其对角质形成细胞的细胞毒性和斑马鱼胚胎的致畸性。","authors":"Gökhan Özokan, Derya Cansız, Abdulkerim Bilginer, İsmail Ünal, Merih Beler, A Ata Alturfan, Ebru Emekli-Alturfan","doi":"10.1080/15376516.2023.2272184","DOIUrl":null,"url":null,"abstract":"<p><p>Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of <i>nqO1</i>, <i>gfap</i>, <i>bdnf</i>, <i>vtg</i>, <i>egr</i>, <i>cyp1a</i>, and <i>igf2</i> were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"203-213"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos.\",\"authors\":\"Gökhan Özokan, Derya Cansız, Abdulkerim Bilginer, İsmail Ünal, Merih Beler, A Ata Alturfan, Ebru Emekli-Alturfan\",\"doi\":\"10.1080/15376516.2023.2272184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of <i>nqO1</i>, <i>gfap</i>, <i>bdnf</i>, <i>vtg</i>, <i>egr</i>, <i>cyp1a</i>, and <i>igf2</i> were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"203-213\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2023.2272184\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2023.2272184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos.
Salicylic acid topical is used to treat variety of skin conditions. However, salicylic acid in these products is generated through industrial synthesis and has been shown to negatively impact fetal development and cause congenital abnormalities. We hypothesized that teratogenic effects reported in salicylic acid can be prevented by naturally synthesizing salicylic acid from wintergreen oil using green chemistry method. For this purpose, we investigated the effects of natural salicylic acid (NSA) synthesized from wintergreen oil using green chemistry and synthetic salicylic acid (SSA) on keratinocyte cell (HaCaT) proliferation and zebrafish embryo development. NSA structures were analyzed by 1H NMR, 13C NMR, and GC/MS methods. Percentage inhibition against HaCaT cell was determined by MTS assay. xCelligence system was used for cellular activities. Zebrafish embryos were exposed to NSA and SSA for 72 h post-fertilization. Lipid peroxidation, nitric oxide, sialic acid, glutathione-S-transferase, catalase, and superoxide dismutase were evaluated using biochemical methods. Expressions of nqO1, gfap, bdnf, vtg, egr, cyp1a, and igf2 were determined by RT-PCR as developmental indicators. MTS and RT-cell analysis showed increased cell viability by NSA, whereas SSA decreased cell viability. NSA beneficially affected zebrafish embryo development while SSA exerted deleterious effects through oxidant-antioxidant status, inflammation, and development. Results of our study showed for the first time that synthesis of salicylic acid from wintergreen oil by green chemistry overcomes its cytotoxicity in keratinocyte cells and teratogenicity in zebrafish embryos. This finding is important for drug research on safe topical applications during pregnancy, when preventing exposure to drug and chemical-derived teratogens is vital.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.