噬菌体及其在纳米医学中的应用。

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Vishnu Kirthi Arivarasan, Chitrakshi Consul
{"title":"噬菌体及其在纳米医学中的应用。","authors":"Vishnu Kirthi Arivarasan,&nbsp;Chitrakshi Consul","doi":"10.1016/bs.pmbts.2023.03.024","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages are viruses that infect the bacteria. However, different studies conducted on the same display a wide range of applications in terms of therapeutic purposes. The structure of a bacteriophage includes the head (site for the storage of its genetic material) and a tail (serves the purpose of detection, ligand-receptor binding and insertion of the genetic material into the host organism). The head being a storehouse of genetic material, the contents of the same are often manipulated for therapeutic purposes. In some cases, these bacteriophages are modified as virus like particles (VLPs), which are employed as carriers for transportation of the desired components to the target site, thereby being reliable alternatives for therapeutic purposes. The distinctive properties of these VLPs include their biocompatibility, abundant space for accommodation of desired components, bio processivity, target specificity, does not interfere with the on-going metabolic processes; thereby being agents of choice for various therapeutic purposes. The bacteriophages play significant roles in delivery of certain components thereby enhancing their therapeutic applications. These include biomolecules such as enzymes, peptide-based drugs, CRISPR along with others. Apart from this, bacteriophage targeted delivery has also shown promising results in cancer treatments and vaccination strategies. Bacteriophages are therefore, promising delivery agents and can be opted for delivery of either single or combination of compounds in future treatment strategies.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacteriophage as cargo and its application in nanomedicine.\",\"authors\":\"Vishnu Kirthi Arivarasan,&nbsp;Chitrakshi Consul\",\"doi\":\"10.1016/bs.pmbts.2023.03.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriophages are viruses that infect the bacteria. However, different studies conducted on the same display a wide range of applications in terms of therapeutic purposes. The structure of a bacteriophage includes the head (site for the storage of its genetic material) and a tail (serves the purpose of detection, ligand-receptor binding and insertion of the genetic material into the host organism). The head being a storehouse of genetic material, the contents of the same are often manipulated for therapeutic purposes. In some cases, these bacteriophages are modified as virus like particles (VLPs), which are employed as carriers for transportation of the desired components to the target site, thereby being reliable alternatives for therapeutic purposes. The distinctive properties of these VLPs include their biocompatibility, abundant space for accommodation of desired components, bio processivity, target specificity, does not interfere with the on-going metabolic processes; thereby being agents of choice for various therapeutic purposes. The bacteriophages play significant roles in delivery of certain components thereby enhancing their therapeutic applications. These include biomolecules such as enzymes, peptide-based drugs, CRISPR along with others. Apart from this, bacteriophage targeted delivery has also shown promising results in cancer treatments and vaccination strategies. Bacteriophages are therefore, promising delivery agents and can be opted for delivery of either single or combination of compounds in future treatment strategies.</p>\",\"PeriodicalId\":49280,\"journal\":{\"name\":\"Progress in Molecular Biology and Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Molecular Biology and Translational Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2023.03.024\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.03.024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

噬菌体是感染细菌的病毒。然而,对同一对象进行的不同研究显示,在治疗目的方面有着广泛的应用。噬菌体的结构包括头部(储存其遗传物质的部位)和尾部(用于检测、配体受体结合和将遗传物质插入宿主生物体的目的)。头部是遗传物质的仓库,其内容物经常被用于治疗目的。在某些情况下,这些噬菌体被修饰为病毒样颗粒(VLP),用作将所需成分运输到靶位点的载体,从而成为治疗目的的可靠替代品。这些VLP的独特特性包括其生物相容性、容纳所需成分的充足空间、生物加工性、靶标特异性,不干扰正在进行的代谢过程;从而成为用于各种治疗目的的选择试剂。噬菌体在某些成分的递送中发挥着重要作用,从而增强了它们的治疗应用。其中包括生物分子,如酶、肽类药物、CRISPR等。除此之外,噬菌体靶向递送在癌症治疗和疫苗接种策略中也显示出有希望的结果。因此,噬菌体是一种很有前途的递送剂,在未来的治疗策略中可以选择递送单一或组合的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacteriophage as cargo and its application in nanomedicine.

Bacteriophages are viruses that infect the bacteria. However, different studies conducted on the same display a wide range of applications in terms of therapeutic purposes. The structure of a bacteriophage includes the head (site for the storage of its genetic material) and a tail (serves the purpose of detection, ligand-receptor binding and insertion of the genetic material into the host organism). The head being a storehouse of genetic material, the contents of the same are often manipulated for therapeutic purposes. In some cases, these bacteriophages are modified as virus like particles (VLPs), which are employed as carriers for transportation of the desired components to the target site, thereby being reliable alternatives for therapeutic purposes. The distinctive properties of these VLPs include their biocompatibility, abundant space for accommodation of desired components, bio processivity, target specificity, does not interfere with the on-going metabolic processes; thereby being agents of choice for various therapeutic purposes. The bacteriophages play significant roles in delivery of certain components thereby enhancing their therapeutic applications. These include biomolecules such as enzymes, peptide-based drugs, CRISPR along with others. Apart from this, bacteriophage targeted delivery has also shown promising results in cancer treatments and vaccination strategies. Bacteriophages are therefore, promising delivery agents and can be opted for delivery of either single or combination of compounds in future treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信