{"title":"辊压成形中纵向应变分布不均匀引起的型材缺陷","authors":"J. Kilz, B. Güngör, F. Aign, P. Groche","doi":"10.1007/s12289-023-01762-3","DOIUrl":null,"url":null,"abstract":"<div><p>Roll \nforming is a sheet metal forming operation that incrementally forms flat sheets into a desired profile geometry. The process is characterized by a high material utilization and a high output quantity. Concomitant with these advantages, profile defects such as bow and twist of the profile can occur. In the literature, an inhomogeneous longitudinal strain distribution across the profile cross-section is considered to be the cause of these defects. However, a quantitative cause and effect analysis is missing up to now. This paper presents an analytical model that shows a quantitative relationship between profile defects and the underlying longitudinal strain distributions. The model can be used to calculate the longitudinal strain distribution of a roll-formed profile across its cross-section based on given values for bow and twist or vice versa. It is compared with results from simulations and experiments and clearly reveals the cause for twist and bow in roll forming.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01762-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Profile defects caused by inhomogeneous longitudinal strain distribution in roll forming\",\"authors\":\"J. Kilz, B. Güngör, F. Aign, P. Groche\",\"doi\":\"10.1007/s12289-023-01762-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Roll \\nforming is a sheet metal forming operation that incrementally forms flat sheets into a desired profile geometry. The process is characterized by a high material utilization and a high output quantity. Concomitant with these advantages, profile defects such as bow and twist of the profile can occur. In the literature, an inhomogeneous longitudinal strain distribution across the profile cross-section is considered to be the cause of these defects. However, a quantitative cause and effect analysis is missing up to now. This paper presents an analytical model that shows a quantitative relationship between profile defects and the underlying longitudinal strain distributions. The model can be used to calculate the longitudinal strain distribution of a roll-formed profile across its cross-section based on given values for bow and twist or vice versa. It is compared with results from simulations and experiments and clearly reveals the cause for twist and bow in roll forming.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-023-01762-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01762-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01762-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Profile defects caused by inhomogeneous longitudinal strain distribution in roll forming
Roll
forming is a sheet metal forming operation that incrementally forms flat sheets into a desired profile geometry. The process is characterized by a high material utilization and a high output quantity. Concomitant with these advantages, profile defects such as bow and twist of the profile can occur. In the literature, an inhomogeneous longitudinal strain distribution across the profile cross-section is considered to be the cause of these defects. However, a quantitative cause and effect analysis is missing up to now. This paper presents an analytical model that shows a quantitative relationship between profile defects and the underlying longitudinal strain distributions. The model can be used to calculate the longitudinal strain distribution of a roll-formed profile across its cross-section based on given values for bow and twist or vice versa. It is compared with results from simulations and experiments and clearly reveals the cause for twist and bow in roll forming.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.