Fei Xu, Yong-Ming Lv, Hai-Bin Wang, Ying-Chun Song
{"title":"miR-31-5p/SOX4轴通过调节细胞外调节蛋白激酶/雷帕霉素激酶信号传导的机械靶点影响软骨细胞自噬和凋亡。","authors":"Fei Xu, Yong-Ming Lv, Hai-Bin Wang, Ying-Chun Song","doi":"10.1159/000519006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear.</p><p><strong>Methods: </strong>Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay.</p><p><strong>Results: </strong>Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3'- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator.</p><p><strong>Conclusion: </strong>These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.</p>","PeriodicalId":244631,"journal":{"name":"Pathobiology : journal of immunopathology, molecular and cellular biology","volume":" ","pages":"63-73"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"miR-31-5p/SOX4 Axis Affects Autophagy and Apoptosis of Chondrocytes by Regulating Extracellular Regulated Protein Kinase/Mechanical Target of Rapamycin Kinase Signalling.\",\"authors\":\"Fei Xu, Yong-Ming Lv, Hai-Bin Wang, Ying-Chun Song\",\"doi\":\"10.1159/000519006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear.</p><p><strong>Methods: </strong>Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay.</p><p><strong>Results: </strong>Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3'- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator.</p><p><strong>Conclusion: </strong>These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.</p>\",\"PeriodicalId\":244631,\"journal\":{\"name\":\"Pathobiology : journal of immunopathology, molecular and cellular biology\",\"volume\":\" \",\"pages\":\"63-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathobiology : journal of immunopathology, molecular and cellular biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000519006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology : journal of immunopathology, molecular and cellular biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000519006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
miR-31-5p/SOX4 Axis Affects Autophagy and Apoptosis of Chondrocytes by Regulating Extracellular Regulated Protein Kinase/Mechanical Target of Rapamycin Kinase Signalling.
Background: Osteoarthritis (OA) is a common type of degenerative joint diseases that is regulated by a combination of complex intercellular signals and modulators, including non-coding RNAs. Mounting evidence suggests that miR-31-5p is physiologically involved in the regulation of chondrocytes, but the mechanism remains unclear.
Methods: Expression levels of miR-31-5p and SOX4 in OA cartilage tissues and in IL-1β-stimulated chondrocytes were examined by quantification polymerase chain reaction (q-PCR) or immunohistochemistry assays. Cell proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Expression of LC3 was detected using immunofluorescence staining. Expressions of autophagy-related proteins and extracellular regulated protein kinase (ERK)/mechanical target of rapamycin kinase (mTORC1) signal-related proteins were measured by Western blot analysis. Molecular interaction was validated by dual luciferase reporter assay.
Results: Downregulation of miR-31-5p and upregulation of SOX4 were observed in both OA patients and OA chondrocytes. Mechanistic experiments revealed that miR-31-5p negatively modulated SOX4 expression by directly targeting its 3'- untranslated region. Moreover, overexpression of miR-31-5p suppressed the activation of mTORC1 in an ERK-dependent manner by inhibiting SOX4. Further functional experiments demonstrated that overexpressing miR-31-5p in OA chondrocytes markedly promoted its proliferation and autophagy while inhibiting apoptosis. However, these effects were abolished by overexpression of SOX4 or treatment with 3BDO, an mTOR activator.
Conclusion: These results demonstrated that miR-31-5p enhanced survival and autophagy of OA chondrocytes through inactivation of mTORC1 via directly targeting SOX4, suggesting that miR-31-5p may play a protective role in OA progression.