用Newton Krylov法求解耦合聚类方程。

Frontiers in Chemistry Pub Date : 2020-12-10 eCollection Date: 2020-01-01 DOI:10.3389/fchem.2020.590184
Chao Yang, Jiri Brabec, Libor Veis, David B Williams-Young, Karol Kowalski
{"title":"用Newton Krylov法求解耦合聚类方程。","authors":"Chao Yang,&nbsp;Jiri Brabec,&nbsp;Libor Veis,&nbsp;David B Williams-Young,&nbsp;Karol Kowalski","doi":"10.3389/fchem.2020.590184","DOIUrl":null,"url":null,"abstract":"<p><p>We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.</p>","PeriodicalId":507928,"journal":{"name":"Frontiers in Chemistry","volume":" ","pages":"590184"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758425/pdf/","citationCount":"4","resultStr":"{\"title\":\"Solving Coupled Cluster Equations by the Newton Krylov Method.\",\"authors\":\"Chao Yang,&nbsp;Jiri Brabec,&nbsp;Libor Veis,&nbsp;David B Williams-Young,&nbsp;Karol Kowalski\",\"doi\":\"10.3389/fchem.2020.590184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.</p>\",\"PeriodicalId\":507928,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\" \",\"pages\":\"590184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758425/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2020.590184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2020.590184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了用Newton Krylov方法求解耦合簇方程。该方法采用Krylov迭代法计算对近似耦合簇振幅的牛顿修正。广义最小残差法(GMRES)等Krylov迭代法的每一步都需要将雅可比矩阵与向量相乘,这种方法是通过有限差分近似进行的,并且需要额外的残差计算。该方法的总代价由内克雷洛夫迭代和外牛顿迭代的总和决定。讨论了内迭代的终止准则,并说明了如何使用前置条件来加速收敛。我们还将研究正则化技术的使用,以提高收敛的稳定性,并通过数值实例将该方法与广泛使用的迭代子空间直接反演(DIIS)方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solving Coupled Cluster Equations by the Newton Krylov Method.

Solving Coupled Cluster Equations by the Newton Krylov Method.

Solving Coupled Cluster Equations by the Newton Krylov Method.

Solving Coupled Cluster Equations by the Newton Krylov Method.

We describe using the Newton Krylov method to solve the coupled cluster equation. The method uses a Krylov iterative method to compute the Newton correction to the approximate coupled cluster amplitude. The multiplication of the Jacobian with a vector, which is required in each step of a Krylov iterative method such as the Generalized Minimum Residual (GMRES) method, is carried out through a finite difference approximation, and requires an additional residual evaluation. The overall cost of the method is determined by the sum of the inner Krylov and outer Newton iterations. We discuss the termination criterion used for the inner iteration and show how to apply pre-conditioners to accelerate convergence. We will also examine the use of regularization technique to improve the stability of convergence and compare the method with the widely used direct inversion of iterative subspace (DIIS) methods through numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信