{"title":"基于两种商用抗菌肽协同效应的淀粉/PBAT吹制抗菌膜","authors":"Shan Gao, Xiaosong Zhai, Yue Cheng, Rui Zhang, Wentao Wang, Hanxue Hou","doi":"10.1016/j.ijbiomac.2022.01.183","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, starch/PBAT antimicrobial film, based on the synergistic effects of two commercial antimicrobial peptides, was fabricated by blown extrusion. The blends with nisin exhibited higher storage modulus and complex viscosity than those with ε-polylysine hydrochloride (ε-PL) alone. ATR-FTIR spectra revealed that new intermolecular hydrogen bonds were formed among starch, nisin, and ε-PL. XRD results indicated that antimicrobial peptides facilitated the destruction of the original crystalline structure of starch. Combination of ε-PL and nisin enhanced tensile strength, flexibility, moisture permeability, and oxygen barrier property of the films with more homogeneous morphology. SP-PN1/2 film (1% ε-PL + 2% nisin) exhibited over 90% inhibition rates against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, and prolonged the shelf life of fresh peaches. The antimicrobial film with nisin and ε-PL showed high safety, cost-effectiveness, consumer acceptability, and thus it had a good application prospect in the food packaging field.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"204 ","pages":"Pages 457-465"},"PeriodicalIF":7.7000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides\",\"authors\":\"Shan Gao, Xiaosong Zhai, Yue Cheng, Rui Zhang, Wentao Wang, Hanxue Hou\",\"doi\":\"10.1016/j.ijbiomac.2022.01.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, starch/PBAT antimicrobial film, based on the synergistic effects of two commercial antimicrobial peptides, was fabricated by blown extrusion. The blends with nisin exhibited higher storage modulus and complex viscosity than those with ε-polylysine hydrochloride (ε-PL) alone. ATR-FTIR spectra revealed that new intermolecular hydrogen bonds were formed among starch, nisin, and ε-PL. XRD results indicated that antimicrobial peptides facilitated the destruction of the original crystalline structure of starch. Combination of ε-PL and nisin enhanced tensile strength, flexibility, moisture permeability, and oxygen barrier property of the films with more homogeneous morphology. SP-PN1/2 film (1% ε-PL + 2% nisin) exhibited over 90% inhibition rates against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, and prolonged the shelf life of fresh peaches. The antimicrobial film with nisin and ε-PL showed high safety, cost-effectiveness, consumer acceptability, and thus it had a good application prospect in the food packaging field.</p></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"204 \",\"pages\":\"Pages 457-465\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813022002069\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813022002069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides
In this study, starch/PBAT antimicrobial film, based on the synergistic effects of two commercial antimicrobial peptides, was fabricated by blown extrusion. The blends with nisin exhibited higher storage modulus and complex viscosity than those with ε-polylysine hydrochloride (ε-PL) alone. ATR-FTIR spectra revealed that new intermolecular hydrogen bonds were formed among starch, nisin, and ε-PL. XRD results indicated that antimicrobial peptides facilitated the destruction of the original crystalline structure of starch. Combination of ε-PL and nisin enhanced tensile strength, flexibility, moisture permeability, and oxygen barrier property of the films with more homogeneous morphology. SP-PN1/2 film (1% ε-PL + 2% nisin) exhibited over 90% inhibition rates against Staphylococcus aureus and Escherichia coli, and prolonged the shelf life of fresh peaches. The antimicrobial film with nisin and ε-PL showed high safety, cost-effectiveness, consumer acceptability, and thus it had a good application prospect in the food packaging field.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.