{"title":"机器学习辅助设计超低氢扩散系数FeCoNiCrMn高熵合金","authors":"Xiao-Ye Zhou , Ji-Hua Zhu , Yuan Wu , Xu-Sheng Yang , Turab Lookman , Hong-Hui Wu","doi":"10.1016/j.actamat.2021.117535","DOIUrl":null,"url":null,"abstract":"<div><p>The broad compositional space of high entropy alloys (HEA) is conducive to the design of HEAs with targeted performance. Herein, a data-driven and machine learning (ML) assisted prediction and optimization strategy is proposed to explore the prototype FeCoNiCrMn HEAs with low hydrogen diffusion coefficients. The model for predicting hydrogen solution energies from local HEA chemical environments was constructed via ML algorithms. Based on the inferred correlation between atomic structures and diffusion coefficients of HEAs built using ML models and kinetic Monte Carlo simulations, we employed the whale optimization algorithm to explore HEA atomic structures with low hydrogen diffusion coefficients. HEAs with low H diffusion coefficients were found to have high Co and Mn content. Finally, a quantitative relationship between the diffusion coefficient and chemical composition is proposed to guide the design of HEAs with low H diffusion coefficients and thus strong resistance to hydrogen embrittlement.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"224 ","pages":"Article 117535"},"PeriodicalIF":8.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients\",\"authors\":\"Xiao-Ye Zhou , Ji-Hua Zhu , Yuan Wu , Xu-Sheng Yang , Turab Lookman , Hong-Hui Wu\",\"doi\":\"10.1016/j.actamat.2021.117535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The broad compositional space of high entropy alloys (HEA) is conducive to the design of HEAs with targeted performance. Herein, a data-driven and machine learning (ML) assisted prediction and optimization strategy is proposed to explore the prototype FeCoNiCrMn HEAs with low hydrogen diffusion coefficients. The model for predicting hydrogen solution energies from local HEA chemical environments was constructed via ML algorithms. Based on the inferred correlation between atomic structures and diffusion coefficients of HEAs built using ML models and kinetic Monte Carlo simulations, we employed the whale optimization algorithm to explore HEA atomic structures with low hydrogen diffusion coefficients. HEAs with low H diffusion coefficients were found to have high Co and Mn content. Finally, a quantitative relationship between the diffusion coefficient and chemical composition is proposed to guide the design of HEAs with low H diffusion coefficients and thus strong resistance to hydrogen embrittlement.</p></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"224 \",\"pages\":\"Article 117535\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645421009137\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645421009137","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients
The broad compositional space of high entropy alloys (HEA) is conducive to the design of HEAs with targeted performance. Herein, a data-driven and machine learning (ML) assisted prediction and optimization strategy is proposed to explore the prototype FeCoNiCrMn HEAs with low hydrogen diffusion coefficients. The model for predicting hydrogen solution energies from local HEA chemical environments was constructed via ML algorithms. Based on the inferred correlation between atomic structures and diffusion coefficients of HEAs built using ML models and kinetic Monte Carlo simulations, we employed the whale optimization algorithm to explore HEA atomic structures with low hydrogen diffusion coefficients. HEAs with low H diffusion coefficients were found to have high Co and Mn content. Finally, a quantitative relationship between the diffusion coefficient and chemical composition is proposed to guide the design of HEAs with low H diffusion coefficients and thus strong resistance to hydrogen embrittlement.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.