{"title":"大鼠I型缓慢适应机械受体的化学敏感性。","authors":"L He, R P Tuckett, K B English","doi":"10.1159/000014612","DOIUrl":null,"url":null,"abstract":"<p><p>An in vitro lateral thoracic skin preparation of the adult rat was used to test the effect of serotonin (5, 50, 500 microM) and control solutions on the response of the type I slowly adapting mechanoreceptor to a standard mechanical stimulus. Serotonin (5-HT) significantly increased the magnitude of the type I response to mechanical indentation: 50 microM 5-HT infusion enhanced responsiveness more effectively than 5 microM 5-HT. In the absence of mechanical stimulation, little or no change in spontaneous discharge relative to control was observed, and recovery to baseline levels occurred within three stimulus trials. In vitro and in vivo control experiments showed no statistically significant change in responsiveness over a similar number of stimulus cycles. It was concluded that 5-HT modulates, but does not activate the rat type I receptor or alter its ability to encode the depth and/or velocity of mechanical displacement.</p>","PeriodicalId":79565,"journal":{"name":"Biological signals and receptors","volume":"8 6","pages":"382-9"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000014612","citationCount":"8","resultStr":"{\"title\":\"Chemosensitivity of the rat type I slowly adapting mechanoreceptor.\",\"authors\":\"L He, R P Tuckett, K B English\",\"doi\":\"10.1159/000014612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An in vitro lateral thoracic skin preparation of the adult rat was used to test the effect of serotonin (5, 50, 500 microM) and control solutions on the response of the type I slowly adapting mechanoreceptor to a standard mechanical stimulus. Serotonin (5-HT) significantly increased the magnitude of the type I response to mechanical indentation: 50 microM 5-HT infusion enhanced responsiveness more effectively than 5 microM 5-HT. In the absence of mechanical stimulation, little or no change in spontaneous discharge relative to control was observed, and recovery to baseline levels occurred within three stimulus trials. In vitro and in vivo control experiments showed no statistically significant change in responsiveness over a similar number of stimulus cycles. It was concluded that 5-HT modulates, but does not activate the rat type I receptor or alter its ability to encode the depth and/or velocity of mechanical displacement.</p>\",\"PeriodicalId\":79565,\"journal\":{\"name\":\"Biological signals and receptors\",\"volume\":\"8 6\",\"pages\":\"382-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000014612\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological signals and receptors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000014612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals and receptors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000014612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemosensitivity of the rat type I slowly adapting mechanoreceptor.
An in vitro lateral thoracic skin preparation of the adult rat was used to test the effect of serotonin (5, 50, 500 microM) and control solutions on the response of the type I slowly adapting mechanoreceptor to a standard mechanical stimulus. Serotonin (5-HT) significantly increased the magnitude of the type I response to mechanical indentation: 50 microM 5-HT infusion enhanced responsiveness more effectively than 5 microM 5-HT. In the absence of mechanical stimulation, little or no change in spontaneous discharge relative to control was observed, and recovery to baseline levels occurred within three stimulus trials. In vitro and in vivo control experiments showed no statistically significant change in responsiveness over a similar number of stimulus cycles. It was concluded that 5-HT modulates, but does not activate the rat type I receptor or alter its ability to encode the depth and/or velocity of mechanical displacement.