基因转移到造血干细胞。

Blood cells Pub Date : 1994-01-01
A W Nienhuis
{"title":"基因转移到造血干细胞。","authors":"A W Nienhuis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to insert a gene into hematopoietic stem cells and achieve lineage specific expression of the transferred gene within hematopoietic organs following bone marrow transplantation would create the potential to effectively treat many genetic and acquired diseases. The use of retroviral vectors to achieve this purpose has been investigated extensively in animal models and most recently, in humans. In the murine model, about 20-30% of repopulating stem cells can be genetically modified with a retroviral vector. Peripheral blood stem cells, mobilized by cytokine administration in splenectomized animals, are readily transduced and are capable of long-term reconstitution of transplant recipients with genetically modified cells. Similar protocols have been utilized to transduce highly purified stem cells from rhesus monkeys. Although long-term repopulation with cells that persistently express the transferred gene has been achieved, the frequency of cells containing the vector genome is only about 1-2%. Genetic marking of human bone marrow and peripheral blood cells has been utilized to investigate their potential for contributing to long-term reconstitution following autologous transplantation. Future work will focus on improving gene transfer efficiencies for specific therapeutic applications.</p>","PeriodicalId":75604,"journal":{"name":"Blood cells","volume":"20 1","pages":"141-7; discussion 147-8"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene transfer into hematopoietic stem cells.\",\"authors\":\"A W Nienhuis\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to insert a gene into hematopoietic stem cells and achieve lineage specific expression of the transferred gene within hematopoietic organs following bone marrow transplantation would create the potential to effectively treat many genetic and acquired diseases. The use of retroviral vectors to achieve this purpose has been investigated extensively in animal models and most recently, in humans. In the murine model, about 20-30% of repopulating stem cells can be genetically modified with a retroviral vector. Peripheral blood stem cells, mobilized by cytokine administration in splenectomized animals, are readily transduced and are capable of long-term reconstitution of transplant recipients with genetically modified cells. Similar protocols have been utilized to transduce highly purified stem cells from rhesus monkeys. Although long-term repopulation with cells that persistently express the transferred gene has been achieved, the frequency of cells containing the vector genome is only about 1-2%. Genetic marking of human bone marrow and peripheral blood cells has been utilized to investigate their potential for contributing to long-term reconstitution following autologous transplantation. Future work will focus on improving gene transfer efficiencies for specific therapeutic applications.</p>\",\"PeriodicalId\":75604,\"journal\":{\"name\":\"Blood cells\",\"volume\":\"20 1\",\"pages\":\"141-7; discussion 147-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将基因插入造血干细胞并在骨髓移植后的造血器官中实现转移基因的谱系特异性表达的能力,将创造有效治疗许多遗传和获得性疾病的潜力。利用逆转录病毒载体实现这一目的已在动物模型中进行了广泛的研究,最近在人类中进行了研究。在小鼠模型中,大约20-30%的再生干细胞可以用逆转录病毒载体进行基因修饰。脾切除动物的外周血干细胞在细胞因子的作用下被动员起来,很容易被转导,并且能够用基因修饰的细胞长期重建移植受体。类似的方法也被用于从恒河猴身上转导高度纯化的干细胞。虽然已经实现了持续表达转移基因的细胞的长期再生,但含有载体基因组的细胞的频率仅为约1-2%。人类骨髓和外周血细胞的遗传标记已被用于研究它们在自体移植后长期重建的潜力。未来的工作将集中在提高特定治疗应用的基因转移效率上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene transfer into hematopoietic stem cells.

The ability to insert a gene into hematopoietic stem cells and achieve lineage specific expression of the transferred gene within hematopoietic organs following bone marrow transplantation would create the potential to effectively treat many genetic and acquired diseases. The use of retroviral vectors to achieve this purpose has been investigated extensively in animal models and most recently, in humans. In the murine model, about 20-30% of repopulating stem cells can be genetically modified with a retroviral vector. Peripheral blood stem cells, mobilized by cytokine administration in splenectomized animals, are readily transduced and are capable of long-term reconstitution of transplant recipients with genetically modified cells. Similar protocols have been utilized to transduce highly purified stem cells from rhesus monkeys. Although long-term repopulation with cells that persistently express the transferred gene has been achieved, the frequency of cells containing the vector genome is only about 1-2%. Genetic marking of human bone marrow and peripheral blood cells has been utilized to investigate their potential for contributing to long-term reconstitution following autologous transplantation. Future work will focus on improving gene transfer efficiencies for specific therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信