{"title":"分散生长的冻干巴斯德卡介苗的稳定性和免疫原性","authors":"M. Gheorghiu , P.H. Lagrange , C. Fillastre","doi":"10.1016/0092-1157(88)90025-X","DOIUrl":null,"url":null,"abstract":"<div><p>The level of antituberculous immunity seems to be related to the number of memory T cells induced. This may vary as a function of the multiplication and persistence of BCG in host tissues. The most important requirements for a BCG vaccine are, therefore, the immunogenicity of the strain, the high proportion of live to dead bacilli, and adequate dispersion and low levels of soluble antigens. The surface-grown Pasteur BCG vaccine contains a very high proportion of bacilli killed by ball-milling and freeze-drying. It also contains clumps and soluble antigens, all factors influencing cell-mediated immune processes and viability control. Therefore, several batches of vaccine were prepared on an industrial scale using one of the most immunogenic strains (French 1173 P2) and grown as dispersed bacilli by a modified cell type culture method. This method provided fully viable, well-dispersed vaccines which have a viability and heat stability superior to that of the classical surface-grown BCG. The immunogenicity was checked by multiplication and persistence in mouse organs and the skin reactivity and tuberculin hypersensitivity in guinea-pigs showed results comparable to those obtained with classical vaccine. Small-scale tests in children showed superior immunogenicity of the dispersed as opposed to the classical vaccine and there was no suppurative adenitis.</p></div>","PeriodicalId":75991,"journal":{"name":"Journal of biological standardization","volume":"16 1","pages":"Pages 15-18, IN1, 19-26"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0092-1157(88)90025-X","citationCount":"71","resultStr":"{\"title\":\"The stability and immunogenicity of a dispersed-grown freeze-dried pasteur BCG vaccine\",\"authors\":\"M. Gheorghiu , P.H. Lagrange , C. Fillastre\",\"doi\":\"10.1016/0092-1157(88)90025-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The level of antituberculous immunity seems to be related to the number of memory T cells induced. This may vary as a function of the multiplication and persistence of BCG in host tissues. The most important requirements for a BCG vaccine are, therefore, the immunogenicity of the strain, the high proportion of live to dead bacilli, and adequate dispersion and low levels of soluble antigens. The surface-grown Pasteur BCG vaccine contains a very high proportion of bacilli killed by ball-milling and freeze-drying. It also contains clumps and soluble antigens, all factors influencing cell-mediated immune processes and viability control. Therefore, several batches of vaccine were prepared on an industrial scale using one of the most immunogenic strains (French 1173 P2) and grown as dispersed bacilli by a modified cell type culture method. This method provided fully viable, well-dispersed vaccines which have a viability and heat stability superior to that of the classical surface-grown BCG. The immunogenicity was checked by multiplication and persistence in mouse organs and the skin reactivity and tuberculin hypersensitivity in guinea-pigs showed results comparable to those obtained with classical vaccine. Small-scale tests in children showed superior immunogenicity of the dispersed as opposed to the classical vaccine and there was no suppurative adenitis.</p></div>\",\"PeriodicalId\":75991,\"journal\":{\"name\":\"Journal of biological standardization\",\"volume\":\"16 1\",\"pages\":\"Pages 15-18, IN1, 19-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0092-1157(88)90025-X\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biological standardization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/009211578890025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biological standardization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/009211578890025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The stability and immunogenicity of a dispersed-grown freeze-dried pasteur BCG vaccine
The level of antituberculous immunity seems to be related to the number of memory T cells induced. This may vary as a function of the multiplication and persistence of BCG in host tissues. The most important requirements for a BCG vaccine are, therefore, the immunogenicity of the strain, the high proportion of live to dead bacilli, and adequate dispersion and low levels of soluble antigens. The surface-grown Pasteur BCG vaccine contains a very high proportion of bacilli killed by ball-milling and freeze-drying. It also contains clumps and soluble antigens, all factors influencing cell-mediated immune processes and viability control. Therefore, several batches of vaccine were prepared on an industrial scale using one of the most immunogenic strains (French 1173 P2) and grown as dispersed bacilli by a modified cell type culture method. This method provided fully viable, well-dispersed vaccines which have a viability and heat stability superior to that of the classical surface-grown BCG. The immunogenicity was checked by multiplication and persistence in mouse organs and the skin reactivity and tuberculin hypersensitivity in guinea-pigs showed results comparable to those obtained with classical vaccine. Small-scale tests in children showed superior immunogenicity of the dispersed as opposed to the classical vaccine and there was no suppurative adenitis.