基于频率调节和无功支持的单级光伏虚拟同步发电机无缝模式控制算法

Prateek Utkarsha;N. Krishna Swami Naidu
{"title":"基于频率调节和无功支持的单级光伏虚拟同步发电机无缝模式控制算法","authors":"Prateek Utkarsha;N. Krishna Swami Naidu","doi":"10.1109/JESTIE.2025.3567344","DOIUrl":null,"url":null,"abstract":"High penetration of inverter-based photovoltaic (PV) systems deplete the overall inertia of the grid. One of the alternatives to inertia emulation in grid-tied renewable sources is a virtual synchronous generator (VSG). Hence, the PV source combined with the VSG characteristics performs better in the grid-integrated mode. Due to the maximum power point tracking (MPPT) operation of PV sources, there is no flexibility to change power generation for any change in the grid attributes, such as frequency. Hence, PV systems require additional energy storage to enable frequency regulation in the event of grid frequency changes, incorporating additional costs. In addition, the PV-VSG inverter is not utilized at night. This article presents a seamless mode control algorithm for a single-stage photovoltaic virtual synchronous generator (PV-VSG) system to participate in frequency regulation under grid frequency disturbances without additional energy storage by operating at deloaded MPPT. In addition, the proposed PV-VSG operates as a STATCOM during the night when there is no active power generation. The effectiveness of the proposed controller is verified with the developed experimental prototype of a PV-VSG under changing solar irradiance, temperature, grid frequency deviation, load change, partial shading, and nonlinear load. A seamless transition of the PV-VSG from grid-connected to standalone mode and STATCOM operation during nighttime is also demonstrated. The proposed control algorithm is compared with existing methods with the help of experimental results.","PeriodicalId":100620,"journal":{"name":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","volume":"6 3","pages":"1119-1130"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seamless Mode Control Algorithm for a Single-Stage Photovoltaic Virtual Synchronous Generator for Frequency Regulation and Reactive Power Support\",\"authors\":\"Prateek Utkarsha;N. Krishna Swami Naidu\",\"doi\":\"10.1109/JESTIE.2025.3567344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High penetration of inverter-based photovoltaic (PV) systems deplete the overall inertia of the grid. One of the alternatives to inertia emulation in grid-tied renewable sources is a virtual synchronous generator (VSG). Hence, the PV source combined with the VSG characteristics performs better in the grid-integrated mode. Due to the maximum power point tracking (MPPT) operation of PV sources, there is no flexibility to change power generation for any change in the grid attributes, such as frequency. Hence, PV systems require additional energy storage to enable frequency regulation in the event of grid frequency changes, incorporating additional costs. In addition, the PV-VSG inverter is not utilized at night. This article presents a seamless mode control algorithm for a single-stage photovoltaic virtual synchronous generator (PV-VSG) system to participate in frequency regulation under grid frequency disturbances without additional energy storage by operating at deloaded MPPT. In addition, the proposed PV-VSG operates as a STATCOM during the night when there is no active power generation. The effectiveness of the proposed controller is verified with the developed experimental prototype of a PV-VSG under changing solar irradiance, temperature, grid frequency deviation, load change, partial shading, and nonlinear load. A seamless transition of the PV-VSG from grid-connected to standalone mode and STATCOM operation during nighttime is also demonstrated. The proposed control algorithm is compared with existing methods with the help of experimental results.\",\"PeriodicalId\":100620,\"journal\":{\"name\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"volume\":\"6 3\",\"pages\":\"1119-1130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Emerging and Selected Topics in Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10989545/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Emerging and Selected Topics in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10989545/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于逆变器的光伏(PV)系统的高渗透率耗尽了电网的整体惯性。并网可再生能源惯性仿真的替代方案之一是虚拟同步发电机(VSG)。因此,结合VSG特性的光伏电源在并网模式下表现更好。由于光伏电源采用最大功率点跟踪(MPPT)运行,电网属性(如频率)的任何变化都无法灵活地改变发电方式。因此,光伏系统需要额外的能量存储,以便在电网频率变化的情况下进行频率调节,这包含了额外的成本。此外,PV-VSG逆变器在夜间不使用。本文提出了单级光伏虚拟同步发电机(PV-VSG)系统在电网频率扰动下参与频率调节而无需额外储能的无缝模式控制算法。此外,拟议的PV-VSG在没有有功发电的夜间作为STATCOM运行。在太阳辐照度、温度、电网频率偏差、负荷变化、部分遮阳和非线性负荷变化的情况下,利用所研制的PV-VSG实验样机验证了所提控制器的有效性。还演示了PV-VSG从并网到独立模式的无缝过渡以及夜间STATCOM运行。结合实验结果,将所提出的控制算法与现有的控制方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seamless Mode Control Algorithm for a Single-Stage Photovoltaic Virtual Synchronous Generator for Frequency Regulation and Reactive Power Support
High penetration of inverter-based photovoltaic (PV) systems deplete the overall inertia of the grid. One of the alternatives to inertia emulation in grid-tied renewable sources is a virtual synchronous generator (VSG). Hence, the PV source combined with the VSG characteristics performs better in the grid-integrated mode. Due to the maximum power point tracking (MPPT) operation of PV sources, there is no flexibility to change power generation for any change in the grid attributes, such as frequency. Hence, PV systems require additional energy storage to enable frequency regulation in the event of grid frequency changes, incorporating additional costs. In addition, the PV-VSG inverter is not utilized at night. This article presents a seamless mode control algorithm for a single-stage photovoltaic virtual synchronous generator (PV-VSG) system to participate in frequency regulation under grid frequency disturbances without additional energy storage by operating at deloaded MPPT. In addition, the proposed PV-VSG operates as a STATCOM during the night when there is no active power generation. The effectiveness of the proposed controller is verified with the developed experimental prototype of a PV-VSG under changing solar irradiance, temperature, grid frequency deviation, load change, partial shading, and nonlinear load. A seamless transition of the PV-VSG from grid-connected to standalone mode and STATCOM operation during nighttime is also demonstrated. The proposed control algorithm is compared with existing methods with the help of experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信