{"title":"基于时频协同网络的PPG远程测量。","authors":"Yiming Li, Qinglin He, Yihan Yang, Yuguang Chu, Yuanhui Hu, Zhe Wu, Xiaokai Bai, Xiaohan Zhang, Weichen Liu, Hui-Liang Shen","doi":"10.1109/JBHI.2025.3589712","DOIUrl":null,"url":null,"abstract":"<p><p>Remote photoplethysmography (rPPG) aims to estimate the blood volume pulse (BVP) signal from facial videos. Existing rPPG approaches still suffer from limitations. We attribute this issue to two primary problems: (1) the reliance solely on time-domain processing that makes the signal susceptible to interference, and (2) the presence of a phase discrepancy between the supervision signal and the ground-truth PPG. To address these problems, we propose TFSNet, a novel time-frequency synergy network for rPPG signal estimation and heart rate prediction. Specifically, we leverage time-frequency fusion (TFF) module, which integrates frequency-domain information into the learning process to enrich the feature representations. Additionally, we introduce the amplitude-phase decoupling (APD) module, which apply phase compensation in frequency domain to mitigate the adverse effects of incorrect phase supervision. Extensive experiments demonstrate that TFSNet achieves state-of-the-art performance, significantly outperforming current approaches in both accuracy and robustness.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote PPG Measurement Using a Synergistic Time-Frequency Network.\",\"authors\":\"Yiming Li, Qinglin He, Yihan Yang, Yuguang Chu, Yuanhui Hu, Zhe Wu, Xiaokai Bai, Xiaohan Zhang, Weichen Liu, Hui-Liang Shen\",\"doi\":\"10.1109/JBHI.2025.3589712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote photoplethysmography (rPPG) aims to estimate the blood volume pulse (BVP) signal from facial videos. Existing rPPG approaches still suffer from limitations. We attribute this issue to two primary problems: (1) the reliance solely on time-domain processing that makes the signal susceptible to interference, and (2) the presence of a phase discrepancy between the supervision signal and the ground-truth PPG. To address these problems, we propose TFSNet, a novel time-frequency synergy network for rPPG signal estimation and heart rate prediction. Specifically, we leverage time-frequency fusion (TFF) module, which integrates frequency-domain information into the learning process to enrich the feature representations. Additionally, we introduce the amplitude-phase decoupling (APD) module, which apply phase compensation in frequency domain to mitigate the adverse effects of incorrect phase supervision. Extensive experiments demonstrate that TFSNet achieves state-of-the-art performance, significantly outperforming current approaches in both accuracy and robustness.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3589712\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3589712","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Remote PPG Measurement Using a Synergistic Time-Frequency Network.
Remote photoplethysmography (rPPG) aims to estimate the blood volume pulse (BVP) signal from facial videos. Existing rPPG approaches still suffer from limitations. We attribute this issue to two primary problems: (1) the reliance solely on time-domain processing that makes the signal susceptible to interference, and (2) the presence of a phase discrepancy between the supervision signal and the ground-truth PPG. To address these problems, we propose TFSNet, a novel time-frequency synergy network for rPPG signal estimation and heart rate prediction. Specifically, we leverage time-frequency fusion (TFF) module, which integrates frequency-domain information into the learning process to enrich the feature representations. Additionally, we introduce the amplitude-phase decoupling (APD) module, which apply phase compensation in frequency domain to mitigate the adverse effects of incorrect phase supervision. Extensive experiments demonstrate that TFSNet achieves state-of-the-art performance, significantly outperforming current approaches in both accuracy and robustness.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.