单cell数据的网络引导稀疏子空间聚类。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Chenyang Yuan, Shunzhou Jiang, Songyun Li, Jicong Fan, Tianwei Yu
{"title":"单cell数据的网络引导稀疏子空间聚类。","authors":"Chenyang Yuan, Shunzhou Jiang, Songyun Li, Jicong Fan, Tianwei Yu","doi":"10.1177/15578666251359688","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network-Guided Sparse Subspace Clustering on Single-Cell Data.\",\"authors\":\"Chenyang Yuan, Shunzhou Jiang, Songyun Li, Jicong Fan, Tianwei Yu\",\"doi\":\"10.1177/15578666251359688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/15578666251359688\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15578666251359688","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

随着单细胞RNA测序(scRNA-seq)技术的快速发展,研究人员现在可以在单个细胞水平上研究基因表达。通过无监督聚类识别细胞类型是分析单细胞数据的一个基本挑战。然而,由于表达轮廓的高维性,传统的聚类方法往往不能产生令人满意的结果。为了解决这个问题,我们开发了NetworkSSC,一种网络引导的稀疏子空间聚类(SSC)方法。NetworkSSC与SSC基于相同的假设,即相同类型的细胞在相同的子空间中具有基因表达。此外,它集成了一个正则化项,包含基因网络的拉普拉斯矩阵,它捕获基因之间的功能关联。对9个scRNA-seq数据集的对比分析表明,在大多数情况下,NetworkSSC优于传统的SSC和其他无监督方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network-Guided Sparse Subspace Clustering on Single-Cell Data.

With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信