{"title":"单cell数据的网络引导稀疏子空间聚类。","authors":"Chenyang Yuan, Shunzhou Jiang, Songyun Li, Jicong Fan, Tianwei Yu","doi":"10.1177/15578666251359688","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network-Guided Sparse Subspace Clustering on Single-Cell Data.\",\"authors\":\"Chenyang Yuan, Shunzhou Jiang, Songyun Li, Jicong Fan, Tianwei Yu\",\"doi\":\"10.1177/15578666251359688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/15578666251359688\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15578666251359688","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Network-Guided Sparse Subspace Clustering on Single-Cell Data.
With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, researchers can now investigate gene expression at the individual cell level. Identifying cell types via unsupervised clustering is a fundamental challenge in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods often fail to produce satisfactory results. To address this problem, we developed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC operates on the same assumption as SSC that cells of the same type have gene expressions lying within the same subspace. In addition, it integrates a regularization term incorporating the gene network's Laplacian matrix, which captures functional associations between genes. Comparative analysis on nine scRNA-seq datasets shows that NetworkSSC outperforms traditional SSC and other unsupervised methods in most cases.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases