{"title":"食管癌骨转移的机器学习预测。","authors":"Liqiang Liu, Wanshi Duan, Tao She, Shouzheng Ma, Haihui Wang, Jiakuan Chen","doi":"10.3389/fmed.2025.1620687","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Bone metastasis (BM) is a common manifestation of distant spread in patients with esophageal cancer. This study aimed to develop a machine learning algorithm to predict the risk of bone metastasis in esophageal cancer patients, thereby supporting clinical decision-making support.</p><p><strong>Methods: </strong>Clinical and pathological data of esophageal cancer patients were obtained from the SEER database of the U.S. National Institutes of Health from 2010 to 2020. Six machine learning models were constructed: Support Vector Machine, Logistic Regression, Extreme Gradient Boosting, Neural Network, Random Forest, and k-Nearest Neighbors. Models performance was evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve. The optimal model was further used to interpret the associations between clinicopathological features and bone metastasis.</p><p><strong>Results: </strong>A total of 9,744 patients were included, with 532 (5.47%) had bone metastasis and 9,212 (94.53%) without. Multivariate logistic regression analysis identified age, T stage, N stage, and histological type as independent risk factors for bone metastasis. The XGBoost model demonstrated the best performance, achieving an accuracy of 0.80, a recall of 0.99, a precision of 0.72, an F1-score of 0.8300, and AUC of 0.92.</p><p><strong>Conclusion: </strong>The XGBoost model showed excellent predictive performance for bone metastasis in esophageal cancer patients, providing valuable insights for guiding clinical treatment decisions.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1620687"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256537/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enabled prediction of bone metastasis in esophageal cancer.\",\"authors\":\"Liqiang Liu, Wanshi Duan, Tao She, Shouzheng Ma, Haihui Wang, Jiakuan Chen\",\"doi\":\"10.3389/fmed.2025.1620687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Bone metastasis (BM) is a common manifestation of distant spread in patients with esophageal cancer. This study aimed to develop a machine learning algorithm to predict the risk of bone metastasis in esophageal cancer patients, thereby supporting clinical decision-making support.</p><p><strong>Methods: </strong>Clinical and pathological data of esophageal cancer patients were obtained from the SEER database of the U.S. National Institutes of Health from 2010 to 2020. Six machine learning models were constructed: Support Vector Machine, Logistic Regression, Extreme Gradient Boosting, Neural Network, Random Forest, and k-Nearest Neighbors. Models performance was evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve. The optimal model was further used to interpret the associations between clinicopathological features and bone metastasis.</p><p><strong>Results: </strong>A total of 9,744 patients were included, with 532 (5.47%) had bone metastasis and 9,212 (94.53%) without. Multivariate logistic regression analysis identified age, T stage, N stage, and histological type as independent risk factors for bone metastasis. The XGBoost model demonstrated the best performance, achieving an accuracy of 0.80, a recall of 0.99, a precision of 0.72, an F1-score of 0.8300, and AUC of 0.92.</p><p><strong>Conclusion: </strong>The XGBoost model showed excellent predictive performance for bone metastasis in esophageal cancer patients, providing valuable insights for guiding clinical treatment decisions.</p>\",\"PeriodicalId\":12488,\"journal\":{\"name\":\"Frontiers in Medicine\",\"volume\":\"12 \",\"pages\":\"1620687\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fmed.2025.1620687\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1620687","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Machine learning-enabled prediction of bone metastasis in esophageal cancer.
Purpose: Bone metastasis (BM) is a common manifestation of distant spread in patients with esophageal cancer. This study aimed to develop a machine learning algorithm to predict the risk of bone metastasis in esophageal cancer patients, thereby supporting clinical decision-making support.
Methods: Clinical and pathological data of esophageal cancer patients were obtained from the SEER database of the U.S. National Institutes of Health from 2010 to 2020. Six machine learning models were constructed: Support Vector Machine, Logistic Regression, Extreme Gradient Boosting, Neural Network, Random Forest, and k-Nearest Neighbors. Models performance was evaluated using accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic curve. The optimal model was further used to interpret the associations between clinicopathological features and bone metastasis.
Results: A total of 9,744 patients were included, with 532 (5.47%) had bone metastasis and 9,212 (94.53%) without. Multivariate logistic regression analysis identified age, T stage, N stage, and histological type as independent risk factors for bone metastasis. The XGBoost model demonstrated the best performance, achieving an accuracy of 0.80, a recall of 0.99, a precision of 0.72, an F1-score of 0.8300, and AUC of 0.92.
Conclusion: The XGBoost model showed excellent predictive performance for bone metastasis in esophageal cancer patients, providing valuable insights for guiding clinical treatment decisions.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world