综合临床特征、炎症标志物和免疫特征:基于yunke的类风湿关节炎预后nomogram模型。

IF 3.1 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Frontiers in Medicine Pub Date : 2025-06-30 eCollection Date: 2025-01-01 DOI:10.3389/fmed.2025.1617957
Zhen Wang, Yihao Li, Jingjing Zhao, Lin Wang, Zengyu Cheng, Fuzeng Zheng
{"title":"综合临床特征、炎症标志物和免疫特征:基于yunke的类风湿关节炎预后nomogram模型。","authors":"Zhen Wang, Yihao Li, Jingjing Zhao, Lin Wang, Zengyu Cheng, Fuzeng Zheng","doi":"10.3389/fmed.2025.1617957","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a prognostic nomogram integrating clinical, inflammatory, and immune parameters for rheumatoid arthritis (RA) patients receiving Yunke-drug combination therapy, facilitating personalized treatment decisions.</p><p><strong>Methods: </strong>We retrospectively analyzed 304 RA patients (2010-2024) divided into training (<i>n</i> = 213) and validation (<i>n</i> = 91) cohorts. Predictor selection through univariate/multivariate logistic regression informed nomogram construction. Model performance was assessed via ROC curves, calibration plots, and decision curve analysis (DCA).</p><p><strong>Results: </strong>Six independent predictors emerged: elevated rheumatoid factor (OR = 1.32, 1.08-1.62), CRP > 10 mg/L (OR = 2.14, 1.45-3.16), ≥4 swollen joints (OR = 1.87, 1.22-2.88), TNF-<i>α</i> > 8.1 pg./mL (OR = 2.05, 1.33-3.17), IL-6 > 15 pg./mL (OR = 1.94, 1.25-3.01), and CD3 + T cells <650/μL (OR = 1.76, 1.15-2.70) (all <i>p</i> < 0.05). The nomogram showed strong discrimination (C-index: 0.883 training; 0.823 validation) with AUCs of 0.881 (0.804-0.958) and 0.823 (0.679-0.966). Sensitivity/specificity reached 94.3%/90.7% (training) versus 78.3%/81.2% (validation). DCA confirmed clinical utility across probability thresholds (15-85%).</p><p><strong>Conclusion: </strong>This first multifactorial nomogram for Yunke-combined therapy integrates joint assessments, serum biomarkers, cytokine profiles, and cellular immunity indicators. Demonstrated predictive accuracy (30.5% training; 29.7% validation response rates) supports its potential for therapeutic monitoring. While internally validated, multicenter studies are required to confirm generalizability. The model establishes a framework for precision RA management, with implications for dose optimization and resistance mechanism research.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1617957"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating clinical features, inflammatory markers, and immune profiles: a Yunke-based nomogram model for rheumatoid arthritis prognosis.\",\"authors\":\"Zhen Wang, Yihao Li, Jingjing Zhao, Lin Wang, Zengyu Cheng, Fuzeng Zheng\",\"doi\":\"10.3389/fmed.2025.1617957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a prognostic nomogram integrating clinical, inflammatory, and immune parameters for rheumatoid arthritis (RA) patients receiving Yunke-drug combination therapy, facilitating personalized treatment decisions.</p><p><strong>Methods: </strong>We retrospectively analyzed 304 RA patients (2010-2024) divided into training (<i>n</i> = 213) and validation (<i>n</i> = 91) cohorts. Predictor selection through univariate/multivariate logistic regression informed nomogram construction. Model performance was assessed via ROC curves, calibration plots, and decision curve analysis (DCA).</p><p><strong>Results: </strong>Six independent predictors emerged: elevated rheumatoid factor (OR = 1.32, 1.08-1.62), CRP > 10 mg/L (OR = 2.14, 1.45-3.16), ≥4 swollen joints (OR = 1.87, 1.22-2.88), TNF-<i>α</i> > 8.1 pg./mL (OR = 2.05, 1.33-3.17), IL-6 > 15 pg./mL (OR = 1.94, 1.25-3.01), and CD3 + T cells <650/μL (OR = 1.76, 1.15-2.70) (all <i>p</i> < 0.05). The nomogram showed strong discrimination (C-index: 0.883 training; 0.823 validation) with AUCs of 0.881 (0.804-0.958) and 0.823 (0.679-0.966). Sensitivity/specificity reached 94.3%/90.7% (training) versus 78.3%/81.2% (validation). DCA confirmed clinical utility across probability thresholds (15-85%).</p><p><strong>Conclusion: </strong>This first multifactorial nomogram for Yunke-combined therapy integrates joint assessments, serum biomarkers, cytokine profiles, and cellular immunity indicators. Demonstrated predictive accuracy (30.5% training; 29.7% validation response rates) supports its potential for therapeutic monitoring. While internally validated, multicenter studies are required to confirm generalizability. The model establishes a framework for precision RA management, with implications for dose optimization and resistance mechanism research.</p>\",\"PeriodicalId\":12488,\"journal\":{\"name\":\"Frontiers in Medicine\",\"volume\":\"12 \",\"pages\":\"1617957\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fmed.2025.1617957\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1617957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立综合类风湿关节炎(RA)患者临床、炎症和免疫参数的预后nomogram,以帮助患者做出个性化的治疗决策。方法:我们回顾性分析了304例RA患者(2010-2024),分为训练组(n = 213)和验证组(n = 91)。通过单变量/多变量逻辑回归选择预测因子,为nomogram构建提供信息。通过ROC曲线、校正图和决策曲线分析(DCA)评估模型的性能。结果:6个独立预测因子:类风湿因子升高(或 = 1.32,1.08 - -1.62),CRP >  10 mg / L(或 = 2.14,1.45 - -3.16),≥4关节肿胀(或 = 1.87,1.22 - -2.88),肿瘤坏死因子-α > 8.1 pg。/mL (OR = 2.05,1.33-3.17),IL-6 > 15 pg。/mL (OR = 1.94,1.25-3.01)和CD3 + T细胞p 结论:这是首个用于yunke联合治疗的多因子nomogram综合评估、血清生物标志物、细胞因子谱和细胞免疫指标。证明预测准确性(30.5%训练;29.7%的验证反应率)支持其治疗监测的潜力。虽然内部验证,但需要多中心研究来证实其普遍性。该模型为RA的精确管理提供了框架,对剂量优化和耐药机制研究具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating clinical features, inflammatory markers, and immune profiles: a Yunke-based nomogram model for rheumatoid arthritis prognosis.

Objective: To develop a prognostic nomogram integrating clinical, inflammatory, and immune parameters for rheumatoid arthritis (RA) patients receiving Yunke-drug combination therapy, facilitating personalized treatment decisions.

Methods: We retrospectively analyzed 304 RA patients (2010-2024) divided into training (n = 213) and validation (n = 91) cohorts. Predictor selection through univariate/multivariate logistic regression informed nomogram construction. Model performance was assessed via ROC curves, calibration plots, and decision curve analysis (DCA).

Results: Six independent predictors emerged: elevated rheumatoid factor (OR = 1.32, 1.08-1.62), CRP > 10 mg/L (OR = 2.14, 1.45-3.16), ≥4 swollen joints (OR = 1.87, 1.22-2.88), TNF-α > 8.1 pg./mL (OR = 2.05, 1.33-3.17), IL-6 > 15 pg./mL (OR = 1.94, 1.25-3.01), and CD3 + T cells <650/μL (OR = 1.76, 1.15-2.70) (all p < 0.05). The nomogram showed strong discrimination (C-index: 0.883 training; 0.823 validation) with AUCs of 0.881 (0.804-0.958) and 0.823 (0.679-0.966). Sensitivity/specificity reached 94.3%/90.7% (training) versus 78.3%/81.2% (validation). DCA confirmed clinical utility across probability thresholds (15-85%).

Conclusion: This first multifactorial nomogram for Yunke-combined therapy integrates joint assessments, serum biomarkers, cytokine profiles, and cellular immunity indicators. Demonstrated predictive accuracy (30.5% training; 29.7% validation response rates) supports its potential for therapeutic monitoring. While internally validated, multicenter studies are required to confirm generalizability. The model establishes a framework for precision RA management, with implications for dose optimization and resistance mechanism research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Medicine
Frontiers in Medicine Medicine-General Medicine
CiteScore
5.10
自引率
5.10%
发文量
3710
审稿时长
12 weeks
期刊介绍: Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate - the use of patient-reported outcomes under real world conditions - the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines - the scientific bases for guidelines and decisions from regulatory authorities - access to medicinal products and medical devices worldwide - addressing the grand health challenges around the world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信