Chenxu Yan, George Burley, Hanyu Gao, Yan-Chuan Shi
{"title":"棕色脂肪组织串扰与胰腺β细胞代谢调节的新见解。","authors":"Chenxu Yan, George Burley, Hanyu Gao, Yan-Chuan Shi","doi":"10.1210/endocr/bqaf118","DOIUrl":null,"url":null,"abstract":"<p><p>Brown adipose tissue (BAT), traditionally recognized for its role in thermogenesis, has emerged as an active endocrine organ that coordinates systemic energy expenditure with glucose homeostasis. This review explores the emerging concept of bidirectional crosstalk between BAT and pancreatic β-cells, focusing on potential mechanisms through which BAT may regulate insulin secretion and β-cell survival. In addition to its thermogenic function, BAT serves as a metabolic sink and secretes various hormones (batokines), metabolites, and exosomes that can influence β-cell function directly or indirectly. Key batokines such as FGF21, IL-6, EPDR1, Nrg4 and PLTP have shown potential in preservation β-cell health, although their clinical relevance requires further investigation. Emerging evidence also points to BAT-derived exosomes and microRNAs, including miR-26a, as novel regulators of insulin secretion. Neural mechanisms may contribute to this inter-organ communication via sympathetic and sensory innervation, and BAT-derived neurotrophic factors may modulate autonomic inputs to peripheral tissues, including the pancreas. Conversely, β-cells influence BAT activation via hormonal (e.g., insulin, glucagon), exosomal, and central pathways, forming a proposed BAT-brain-islet axis. This bidirectional communication appears disrupted in obesity and diabetes, where BAT dysfunction and β-cell stress exacerbate metabolic decline. Despite growing interest, mechanistic insights into BAT-islet crosstalk remain incomplete. Future research using omics technologies, co-culture systems and in vivo manipulation models will be critical to identify novel mediators and clarify their roles in metabolic regulation. Understanding this inter-organ communication may offer new therapeutic avenues for obesity and diabetes.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Insights into Brown Adipose Tissue Crosstalk with Pancreatic β-Cells in Metabolic Regulation.\",\"authors\":\"Chenxu Yan, George Burley, Hanyu Gao, Yan-Chuan Shi\",\"doi\":\"10.1210/endocr/bqaf118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brown adipose tissue (BAT), traditionally recognized for its role in thermogenesis, has emerged as an active endocrine organ that coordinates systemic energy expenditure with glucose homeostasis. This review explores the emerging concept of bidirectional crosstalk between BAT and pancreatic β-cells, focusing on potential mechanisms through which BAT may regulate insulin secretion and β-cell survival. In addition to its thermogenic function, BAT serves as a metabolic sink and secretes various hormones (batokines), metabolites, and exosomes that can influence β-cell function directly or indirectly. Key batokines such as FGF21, IL-6, EPDR1, Nrg4 and PLTP have shown potential in preservation β-cell health, although their clinical relevance requires further investigation. Emerging evidence also points to BAT-derived exosomes and microRNAs, including miR-26a, as novel regulators of insulin secretion. Neural mechanisms may contribute to this inter-organ communication via sympathetic and sensory innervation, and BAT-derived neurotrophic factors may modulate autonomic inputs to peripheral tissues, including the pancreas. Conversely, β-cells influence BAT activation via hormonal (e.g., insulin, glucagon), exosomal, and central pathways, forming a proposed BAT-brain-islet axis. This bidirectional communication appears disrupted in obesity and diabetes, where BAT dysfunction and β-cell stress exacerbate metabolic decline. Despite growing interest, mechanistic insights into BAT-islet crosstalk remain incomplete. Future research using omics technologies, co-culture systems and in vivo manipulation models will be critical to identify novel mediators and clarify their roles in metabolic regulation. Understanding this inter-organ communication may offer new therapeutic avenues for obesity and diabetes.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf118\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Emerging Insights into Brown Adipose Tissue Crosstalk with Pancreatic β-Cells in Metabolic Regulation.
Brown adipose tissue (BAT), traditionally recognized for its role in thermogenesis, has emerged as an active endocrine organ that coordinates systemic energy expenditure with glucose homeostasis. This review explores the emerging concept of bidirectional crosstalk between BAT and pancreatic β-cells, focusing on potential mechanisms through which BAT may regulate insulin secretion and β-cell survival. In addition to its thermogenic function, BAT serves as a metabolic sink and secretes various hormones (batokines), metabolites, and exosomes that can influence β-cell function directly or indirectly. Key batokines such as FGF21, IL-6, EPDR1, Nrg4 and PLTP have shown potential in preservation β-cell health, although their clinical relevance requires further investigation. Emerging evidence also points to BAT-derived exosomes and microRNAs, including miR-26a, as novel regulators of insulin secretion. Neural mechanisms may contribute to this inter-organ communication via sympathetic and sensory innervation, and BAT-derived neurotrophic factors may modulate autonomic inputs to peripheral tissues, including the pancreas. Conversely, β-cells influence BAT activation via hormonal (e.g., insulin, glucagon), exosomal, and central pathways, forming a proposed BAT-brain-islet axis. This bidirectional communication appears disrupted in obesity and diabetes, where BAT dysfunction and β-cell stress exacerbate metabolic decline. Despite growing interest, mechanistic insights into BAT-islet crosstalk remain incomplete. Future research using omics technologies, co-culture systems and in vivo manipulation models will be critical to identify novel mediators and clarify their roles in metabolic regulation. Understanding this inter-organ communication may offer new therapeutic avenues for obesity and diabetes.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.