复合优化问题的时变系数预定义时间神经动力学

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dongmei Yu , Shaowei Lin , Gehao Zhang , Hongrui Yin
{"title":"复合优化问题的时变系数预定义时间神经动力学","authors":"Dongmei Yu ,&nbsp;Shaowei Lin ,&nbsp;Gehao Zhang ,&nbsp;Hongrui Yin","doi":"10.1016/j.chaos.2025.116792","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a predefined-time with time-varying coefficients neurodynamic (PTTVCN) model to solve composite optimization problems (COPs). We first present the Lyapunov stability conditions for predefined-time stability in time-varying dynamical system and provide specific inferences under different time-varying coefficients. We then propose the PTTVCN model to solve COPs based on the predefined-time stability conditions of time-varying dynamical system. Theoretical analysis verifies that the PTTVCN model can achieve uniform convergence within predefined time and possesses a certain degree of noise resistance. Simulation results are given to show the effectiveness of the proposed predefined-time stability neurodynamic model with time-varying coefficients for COPs. Finally, numerical experiments on both image restoration and Poisson regression problems validate the superiority of the proposed method.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116792"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predefined-time with time-varying coefficients neurodynamic for composite optimization problems\",\"authors\":\"Dongmei Yu ,&nbsp;Shaowei Lin ,&nbsp;Gehao Zhang ,&nbsp;Hongrui Yin\",\"doi\":\"10.1016/j.chaos.2025.116792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a predefined-time with time-varying coefficients neurodynamic (PTTVCN) model to solve composite optimization problems (COPs). We first present the Lyapunov stability conditions for predefined-time stability in time-varying dynamical system and provide specific inferences under different time-varying coefficients. We then propose the PTTVCN model to solve COPs based on the predefined-time stability conditions of time-varying dynamical system. Theoretical analysis verifies that the PTTVCN model can achieve uniform convergence within predefined time and possesses a certain degree of noise resistance. Simulation results are given to show the effectiveness of the proposed predefined-time stability neurodynamic model with time-varying coefficients for COPs. Finally, numerical experiments on both image restoration and Poisson regression problems validate the superiority of the proposed method.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116792\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925008057\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925008057","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有时变系数的预定义时间神经动力学(PTTVCN)模型来解决复合优化问题(cop)。首先给出了时变动力系统预定义时稳定性的Lyapunov稳定性条件,并给出了不同时变系数下的具体推论。在此基础上,提出了基于时变动力系统时间稳定性条件的PTTVCN模型。理论分析验证了PTTVCN模型能在预定时间内实现均匀收敛,并具有一定的抗噪性。仿真结果表明,所提出的带时变系数的预定义时间稳定性神经动力学模型是有效的。最后,对图像恢复和泊松回归问题进行了数值实验,验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predefined-time with time-varying coefficients neurodynamic for composite optimization problems
In this paper, we propose a predefined-time with time-varying coefficients neurodynamic (PTTVCN) model to solve composite optimization problems (COPs). We first present the Lyapunov stability conditions for predefined-time stability in time-varying dynamical system and provide specific inferences under different time-varying coefficients. We then propose the PTTVCN model to solve COPs based on the predefined-time stability conditions of time-varying dynamical system. Theoretical analysis verifies that the PTTVCN model can achieve uniform convergence within predefined time and possesses a certain degree of noise resistance. Simulation results are given to show the effectiveness of the proposed predefined-time stability neurodynamic model with time-varying coefficients for COPs. Finally, numerical experiments on both image restoration and Poisson regression problems validate the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信