可穿戴设备松弛可视化:基于模糊递归图的HRV多域特征融合。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-06 DOI:10.3390/s25134210
Puneet Arya, Mandeep Singh, Mandeep Singh
{"title":"可穿戴设备松弛可视化:基于模糊递归图的HRV多域特征融合。","authors":"Puneet Arya, Mandeep Singh, Mandeep Singh","doi":"10.3390/s25134210","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional relaxation techniques such as meditation and slow breathing often rely on subjective self-assessment, making it difficult to objectively monitor physiological changes. Electrocardiograms (ECG), which are commonly used by clinicians, provide one-dimensional signals to interpret cardiovascular activity. In this study, we introduce a visual interpretation framework that transforms heart rate variability (HRV) time series into fuzzy recurrence plots (FRPs). Unlike ECGs' linear traces, FRPs are two-dimensional images that reveal distinctive textural patterns corresponding to autonomic changes. These visually rich patterns make it easier for even non-experts with minimal training to track changes in relaxation states. To enable automated detection, we propose a multi-domain feature fusion framework suitable for wearable systems. HRV data were collected from 60 participants during spontaneous and slow-paced breathing sessions. Features were extracted from five domains: time, frequency, non-linear, geometric, and image-based. Feature selection was performed using the Fisher discriminant ratio, correlation filtering, and greedy search. Among six evaluated classifiers, support vector machine (SVM) achieved the highest performance, with 96.6% accuracy and 100% specificity using only three selected features. Our approach offers both human-interpretable visual feedback through FRP and accurate automated detection, making it highly promising for objectively monitoring real-time stress and developing biofeedback systems in wearable devices.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252487/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualizing Relaxation in Wearables: Multi-Domain Feature Fusion of HRV Using Fuzzy Recurrence Plots.\",\"authors\":\"Puneet Arya, Mandeep Singh, Mandeep Singh\",\"doi\":\"10.3390/s25134210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional relaxation techniques such as meditation and slow breathing often rely on subjective self-assessment, making it difficult to objectively monitor physiological changes. Electrocardiograms (ECG), which are commonly used by clinicians, provide one-dimensional signals to interpret cardiovascular activity. In this study, we introduce a visual interpretation framework that transforms heart rate variability (HRV) time series into fuzzy recurrence plots (FRPs). Unlike ECGs' linear traces, FRPs are two-dimensional images that reveal distinctive textural patterns corresponding to autonomic changes. These visually rich patterns make it easier for even non-experts with minimal training to track changes in relaxation states. To enable automated detection, we propose a multi-domain feature fusion framework suitable for wearable systems. HRV data were collected from 60 participants during spontaneous and slow-paced breathing sessions. Features were extracted from five domains: time, frequency, non-linear, geometric, and image-based. Feature selection was performed using the Fisher discriminant ratio, correlation filtering, and greedy search. Among six evaluated classifiers, support vector machine (SVM) achieved the highest performance, with 96.6% accuracy and 100% specificity using only three selected features. Our approach offers both human-interpretable visual feedback through FRP and accurate automated detection, making it highly promising for objectively monitoring real-time stress and developing biofeedback systems in wearable devices.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252487/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134210\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134210","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的放松技巧,如冥想和慢呼吸,往往依赖于主观的自我评估,很难客观地监测生理变化。临床医生常用的心电图(ECG)提供一维信号来解释心血管活动。在这项研究中,我们引入了一个视觉解释框架,将心率变异性(HRV)时间序列转换为模糊递归图(FRPs)。与心电图的线性轨迹不同,frp是二维图像,显示了与自主神经变化相对应的独特纹理模式。这些视觉上丰富的模式使即使是没有受过最少训练的非专业人士也能更容易地跟踪放松状态的变化。为了实现自动检测,我们提出了一种适合可穿戴系统的多域特征融合框架。从60名参与者中收集了自发呼吸和慢节奏呼吸的HRV数据。从五个领域提取特征:时间、频率、非线性、几何和基于图像。使用Fisher判别比、相关滤波和贪婪搜索进行特征选择。在六个被评估的分类器中,支持向量机(SVM)仅使用三个选定的特征就获得了最高的性能,准确率为96.6%,特异性为100%。我们的方法通过FRP提供人类可解释的视觉反馈和精确的自动检测,使其在客观监测实时应力和开发可穿戴设备的生物反馈系统方面非常有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Relaxation in Wearables: Multi-Domain Feature Fusion of HRV Using Fuzzy Recurrence Plots.

Traditional relaxation techniques such as meditation and slow breathing often rely on subjective self-assessment, making it difficult to objectively monitor physiological changes. Electrocardiograms (ECG), which are commonly used by clinicians, provide one-dimensional signals to interpret cardiovascular activity. In this study, we introduce a visual interpretation framework that transforms heart rate variability (HRV) time series into fuzzy recurrence plots (FRPs). Unlike ECGs' linear traces, FRPs are two-dimensional images that reveal distinctive textural patterns corresponding to autonomic changes. These visually rich patterns make it easier for even non-experts with minimal training to track changes in relaxation states. To enable automated detection, we propose a multi-domain feature fusion framework suitable for wearable systems. HRV data were collected from 60 participants during spontaneous and slow-paced breathing sessions. Features were extracted from five domains: time, frequency, non-linear, geometric, and image-based. Feature selection was performed using the Fisher discriminant ratio, correlation filtering, and greedy search. Among six evaluated classifiers, support vector machine (SVM) achieved the highest performance, with 96.6% accuracy and 100% specificity using only three selected features. Our approach offers both human-interpretable visual feedback through FRP and accurate automated detection, making it highly promising for objectively monitoring real-time stress and developing biofeedback systems in wearable devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信