激光诱导击穿光谱法鉴别淀粉基香肠中的鸡骨膏

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134226
Haoyu Li, Li Shen, Xiang Han, Yu Liu, Yutong Wang
{"title":"激光诱导击穿光谱法鉴别淀粉基香肠中的鸡骨膏","authors":"Haoyu Li, Li Shen, Xiang Han, Yu Liu, Yutong Wang","doi":"10.3390/s25134226","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R<sup>2</sup>) of each element's spectral lines have significantly improved. Specifically, the R<sup>2</sup> values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Chicken Bone Paste in Starch-Based Sausages Using Laser-Induced Breakdown Spectroscopy.\",\"authors\":\"Haoyu Li, Li Shen, Xiang Han, Yu Liu, Yutong Wang\",\"doi\":\"10.3390/s25134226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R<sup>2</sup>) of each element's spectral lines have significantly improved. Specifically, the R<sup>2</sup> values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134226\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134226","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在快速原位鉴定不适当添加鸡骨酱的淀粉香肠样品。鸡骨在建筑材料、生物质燃料和酶解后的食品添加剂中发挥着重要作用,但目前还没有研究表明鸡骨可以直接添加到食品中食用。特别是在淀粉香肠中,鸡骨酱的添加备受争议,因为它有可能导致食管撕裂和宗教问题。本文首先利用激光诱导击穿光谱(LIBS)研究了淀粉香肠和鸡骨酱的元素差异。通过制备不同比例的淀粉香肠和鸡骨酱的混合物,测定了Ca、Ba、Sr等元素的光谱峰强度与鸡骨酱的比例之间的关系。通过与参考谱线归一化、选择同一位置的第二激光脉冲信号、电子温度校正等处理方法,各元素谱线的确定系数R2有了明显提高。其中Ca I、Ca II、Ba II和Sr II的R2值分别从0.302、0.694、0.857和0.691增加到0.972、0.952、0.970和0.982。最后,利用主成分分析(PCA)对不同比例的淀粉香肠、鸡骨酱及其混合物进行区分,并通过t分布随机邻居嵌入(t-SNE)进一步实现有效区分。结果表明,LIBS技术可作为一种有效、快速的食品元素组成检测和区分不同食品的方法,为食品生产和监管提供安全保障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Chicken Bone Paste in Starch-Based Sausages Using Laser-Induced Breakdown Spectroscopy.

This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R2) of each element's spectral lines have significantly improved. Specifically, the R2 values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信