Marta Terrados-Cristos, Marina Diaz-Piloneta, Francisco Ortega-Fernández, Gemma Marta Martinez-Huerta, José Valeriano Alvarez-Cabal
{"title":"基于机器学习预测模型的沿海环境腐蚀风险评估。","authors":"Marta Terrados-Cristos, Marina Diaz-Piloneta, Francisco Ortega-Fernández, Gemma Marta Martinez-Huerta, José Valeriano Alvarez-Cabal","doi":"10.3390/s25134231","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric corrosion, especially in coastal environments, presents a major challenge for the long-term durability of metallic and concrete infrastructure due to chloride deposition from marine aerosols. With a significant portion of the global population residing in coastal zones-often associated with intense industrial activity-there is growing demand for accurate and early corrosion prediction methods. Traditional standards for assessing atmospheric corrosivity depend on long-term empirical data, limiting their usefulness during the design stage of infrastructure projects. To address this limitation, this study develops predictive models using machine-learning techniques, namely gradient boosting, support vector machine, and neural networks, to estimate chloride deposition levels based on easily accessible climatic and geographical parameters. Our models were trained on a comprehensive dataset that included variables such as land coverage, wind speed, and orientation. Among the models tested, tree-based algorithms, particularly gradient boosting, provided the highest prediction accuracy (F1 score: 0.8673). This approach not only highlights the most influential environmental variables driving chloride deposition but also offers a scalable and cost-effective solution to support corrosion monitoring and structural life assessment in coastal infrastructure.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252465/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corrosion Risk Assessment in Coastal Environments Using Machine Learning-Based Predictive Models.\",\"authors\":\"Marta Terrados-Cristos, Marina Diaz-Piloneta, Francisco Ortega-Fernández, Gemma Marta Martinez-Huerta, José Valeriano Alvarez-Cabal\",\"doi\":\"10.3390/s25134231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atmospheric corrosion, especially in coastal environments, presents a major challenge for the long-term durability of metallic and concrete infrastructure due to chloride deposition from marine aerosols. With a significant portion of the global population residing in coastal zones-often associated with intense industrial activity-there is growing demand for accurate and early corrosion prediction methods. Traditional standards for assessing atmospheric corrosivity depend on long-term empirical data, limiting their usefulness during the design stage of infrastructure projects. To address this limitation, this study develops predictive models using machine-learning techniques, namely gradient boosting, support vector machine, and neural networks, to estimate chloride deposition levels based on easily accessible climatic and geographical parameters. Our models were trained on a comprehensive dataset that included variables such as land coverage, wind speed, and orientation. Among the models tested, tree-based algorithms, particularly gradient boosting, provided the highest prediction accuracy (F1 score: 0.8673). This approach not only highlights the most influential environmental variables driving chloride deposition but also offers a scalable and cost-effective solution to support corrosion monitoring and structural life assessment in coastal infrastructure.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134231\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134231","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Corrosion Risk Assessment in Coastal Environments Using Machine Learning-Based Predictive Models.
Atmospheric corrosion, especially in coastal environments, presents a major challenge for the long-term durability of metallic and concrete infrastructure due to chloride deposition from marine aerosols. With a significant portion of the global population residing in coastal zones-often associated with intense industrial activity-there is growing demand for accurate and early corrosion prediction methods. Traditional standards for assessing atmospheric corrosivity depend on long-term empirical data, limiting their usefulness during the design stage of infrastructure projects. To address this limitation, this study develops predictive models using machine-learning techniques, namely gradient boosting, support vector machine, and neural networks, to estimate chloride deposition levels based on easily accessible climatic and geographical parameters. Our models were trained on a comprehensive dataset that included variables such as land coverage, wind speed, and orientation. Among the models tested, tree-based algorithms, particularly gradient boosting, provided the highest prediction accuracy (F1 score: 0.8673). This approach not only highlights the most influential environmental variables driving chloride deposition but also offers a scalable and cost-effective solution to support corrosion monitoring and structural life assessment in coastal infrastructure.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.