高精度球面近场天线测量中机械对准误差方向图不确定度的精确快速数值估计。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134227
Kyriakos Kaslis, Samel Arslanagic, Olav Breinbjerg
{"title":"高精度球面近场天线测量中机械对准误差方向图不确定度的精确快速数值估计。","authors":"Kyriakos Kaslis, Samel Arslanagic, Olav Breinbjerg","doi":"10.3390/s25134227","DOIUrl":null,"url":null,"abstract":"<p><p>Every experimental measurement is affected by random and/or systematic error sources, causing the measurand to have an associated uncertainty quantified in terms of a confidence interval and confidence level. For high-accuracy spherical near-field antenna measurements, there are approximately 20 error sources whose individual contributions to the measurand uncertainty must be estimated for each antenna under test; thus, this uncertainty estimation is a required task in each measurement project. The error sources associated with the mechanical alignment of the antenna under test are of particular importance, not only because the consequential pattern uncertainty differs significantly for different antennas under test, but also because the common practice of experimental uncertainty estimation is very time-consuming with separate uncertainty measurements, thus requiring the antenna under test as well as the measurement facility. We propose a numerical pattern uncertainty estimation for mechanical alignment errors based on a nominal full-sphere measurement without the need for separate uncertainty measurements. Thus, it does not occupy either the antenna under test or the measurement facilities. In addition, numerical uncertainty estimation enables the isolation of individual error sources and their contributions to pattern uncertainties.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate and Fast Numerical Estimation of Pattern Uncertainty for Mechanical Alignment Errors in High-Accuracy Spherical Near-Field Antenna Measurements.\",\"authors\":\"Kyriakos Kaslis, Samel Arslanagic, Olav Breinbjerg\",\"doi\":\"10.3390/s25134227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Every experimental measurement is affected by random and/or systematic error sources, causing the measurand to have an associated uncertainty quantified in terms of a confidence interval and confidence level. For high-accuracy spherical near-field antenna measurements, there are approximately 20 error sources whose individual contributions to the measurand uncertainty must be estimated for each antenna under test; thus, this uncertainty estimation is a required task in each measurement project. The error sources associated with the mechanical alignment of the antenna under test are of particular importance, not only because the consequential pattern uncertainty differs significantly for different antennas under test, but also because the common practice of experimental uncertainty estimation is very time-consuming with separate uncertainty measurements, thus requiring the antenna under test as well as the measurement facility. We propose a numerical pattern uncertainty estimation for mechanical alignment errors based on a nominal full-sphere measurement without the need for separate uncertainty measurements. Thus, it does not occupy either the antenna under test or the measurement facilities. In addition, numerical uncertainty estimation enables the isolation of individual error sources and their contributions to pattern uncertainties.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134227\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134227","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

每一次实验测量都受到随机和/或系统误差源的影响,导致测量具有用置信区间和置信水平量化的相关不确定性。对于高精度球面近场天线测量,大约有20个误差源,必须对每个被测天线估计其对测量不确定性的单独贡献;因此,这种不确定度估计是每个测量项目中必需的任务。与被测天线机械对准相关的误差源尤为重要,这不仅是因为不同被测天线的方向图不确定度差异很大,而且还因为通常的实验不确定度估计方法非常耗时,需要单独进行不确定度测量,因此需要被测天线和测量设备。我们提出了一种基于标称全球面测量的机械校准误差的数值模式不确定度估计,而不需要单独的不确定度测量。因此,它既不占用被测天线,也不占用测量设施。此外,数值不确定性估计能够隔离单个误差源及其对模式不确定性的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate and Fast Numerical Estimation of Pattern Uncertainty for Mechanical Alignment Errors in High-Accuracy Spherical Near-Field Antenna Measurements.

Every experimental measurement is affected by random and/or systematic error sources, causing the measurand to have an associated uncertainty quantified in terms of a confidence interval and confidence level. For high-accuracy spherical near-field antenna measurements, there are approximately 20 error sources whose individual contributions to the measurand uncertainty must be estimated for each antenna under test; thus, this uncertainty estimation is a required task in each measurement project. The error sources associated with the mechanical alignment of the antenna under test are of particular importance, not only because the consequential pattern uncertainty differs significantly for different antennas under test, but also because the common practice of experimental uncertainty estimation is very time-consuming with separate uncertainty measurements, thus requiring the antenna under test as well as the measurement facility. We propose a numerical pattern uncertainty estimation for mechanical alignment errors based on a nominal full-sphere measurement without the need for separate uncertainty measurements. Thus, it does not occupy either the antenna under test or the measurement facilities. In addition, numerical uncertainty estimation enables the isolation of individual error sources and their contributions to pattern uncertainties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信