非重叠视场下非线性系统分布式多传感器融合研究。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-07 DOI:10.3390/s25134241
Liu Wang, Yang Zhou, Wenjia Li, Lijuan Shi, Jian Zhao, Haiyan Wang
{"title":"非重叠视场下非线性系统分布式多传感器融合研究。","authors":"Liu Wang, Yang Zhou, Wenjia Li, Lijuan Shi, Jian Zhao, Haiyan Wang","doi":"10.3390/s25134241","DOIUrl":null,"url":null,"abstract":"<p><p>To explore how varying viewpoints influence the accuracy of distributed fusion in asynchronous, nonlinear visual-field systems, this study investigates fusion strategies for multi-target tracking. The primary focus is on how different sensor perspectives affect the fusion of nonlinear moving-target data and the spatial segmentation of such targets. We propose a differential-view nonlinear multi-target tracking approach that integrates the Gaussian mixture, jump Markov nonlinear system, and the cardinalized probability hypothesis density (GM-JMNS-CPHD). The method begins by partitioning the observation space based on the boundaries of distinct viewpoints. Next, it applies a combined technique-the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and SOS (stochastic outlier selection)-to identify outliers near these boundaries. To achieve accurate detection, the posterior intensity is split into several sub-intensities, followed by reconstructing the multi-Bernoulli cardinality distribution to model the target population in each subregion. The algorithm's computational complexity remains on par with the standard GM-JMNS-CPHD filter. Simulation results confirm the proposed method's robustness and accuracy, demonstrating a lower error rate compared to other benchmark algorithms.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252492/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Study on Distributed Multi-Sensor Fusion for Nonlinear Systems Under Non-Overlapping Fields of View.\",\"authors\":\"Liu Wang, Yang Zhou, Wenjia Li, Lijuan Shi, Jian Zhao, Haiyan Wang\",\"doi\":\"10.3390/s25134241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore how varying viewpoints influence the accuracy of distributed fusion in asynchronous, nonlinear visual-field systems, this study investigates fusion strategies for multi-target tracking. The primary focus is on how different sensor perspectives affect the fusion of nonlinear moving-target data and the spatial segmentation of such targets. We propose a differential-view nonlinear multi-target tracking approach that integrates the Gaussian mixture, jump Markov nonlinear system, and the cardinalized probability hypothesis density (GM-JMNS-CPHD). The method begins by partitioning the observation space based on the boundaries of distinct viewpoints. Next, it applies a combined technique-the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and SOS (stochastic outlier selection)-to identify outliers near these boundaries. To achieve accurate detection, the posterior intensity is split into several sub-intensities, followed by reconstructing the multi-Bernoulli cardinality distribution to model the target population in each subregion. The algorithm's computational complexity remains on par with the standard GM-JMNS-CPHD filter. Simulation results confirm the proposed method's robustness and accuracy, demonstrating a lower error rate compared to other benchmark algorithms.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252492/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134241\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134241","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了探讨不同视点对异步非线性视野系统中分布式融合精度的影响,本研究对多目标跟踪的融合策略进行了研究。主要研究了不同传感器视角对非线性运动目标数据融合和空间分割的影响。提出了一种结合高斯混合、跳跃马尔可夫非线性系统和基数化概率假设密度(GM-JMNS-CPHD)的微分视图非线性多目标跟踪方法。该方法首先根据不同视点的边界划分观测空间。接下来,它应用一种组合技术——TOPSIS(通过与理想解决方案相似的顺序偏好技术)和SOS(随机离群值选择)——来识别这些边界附近的离群值。为了实现准确的检测,将后验强度分成几个子强度,然后重建多伯努利基数分布,对每个子区域的目标种群进行建模。该算法的计算复杂度与标准GM-JMNS-CPHD滤波器相当。仿真结果验证了该方法的鲁棒性和准确性,与其他基准算法相比具有较低的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Distributed Multi-Sensor Fusion for Nonlinear Systems Under Non-Overlapping Fields of View.

To explore how varying viewpoints influence the accuracy of distributed fusion in asynchronous, nonlinear visual-field systems, this study investigates fusion strategies for multi-target tracking. The primary focus is on how different sensor perspectives affect the fusion of nonlinear moving-target data and the spatial segmentation of such targets. We propose a differential-view nonlinear multi-target tracking approach that integrates the Gaussian mixture, jump Markov nonlinear system, and the cardinalized probability hypothesis density (GM-JMNS-CPHD). The method begins by partitioning the observation space based on the boundaries of distinct viewpoints. Next, it applies a combined technique-the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and SOS (stochastic outlier selection)-to identify outliers near these boundaries. To achieve accurate detection, the posterior intensity is split into several sub-intensities, followed by reconstructing the multi-Bernoulli cardinality distribution to model the target population in each subregion. The algorithm's computational complexity remains on par with the standard GM-JMNS-CPHD filter. Simulation results confirm the proposed method's robustness and accuracy, demonstrating a lower error rate compared to other benchmark algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信