Agustina Pascual, Franco Calabresi, Daniela de la Fuente, M Inés Catalano, M Eugenia Brentassi
{"title":"玉米害虫褐飞虱(半翅目:褐飞虱科)脂肪体转录组分析揭示真菌内共生体的重要作用。","authors":"Agustina Pascual, Franco Calabresi, Daniela de la Fuente, M Inés Catalano, M Eugenia Brentassi","doi":"10.1007/s00248-025-02572-7","DOIUrl":null,"url":null,"abstract":"<p><p>The fat body of certain insects, in addition to performing essential biosynthetic and metabolic functions, harbors endosymbionts that play critical roles for their host. While knowledge of the diversity and functions of fungal endosymbionts harbored in the fat body of planthoppers is mostly limited to rice pests of Asia, our study presents a comprehensive transcriptomic analysis of the fat body of Delphacodes kuscheli (Hemiptera: Delphacidae), an important agricultural pest of maize in Argentina. The dominant fungal endosymbionts, identified as yeast-like symbionts (YLS), include members of the genera Ophiocordyceps, Cordyceps, Hirsutella, and Tolypocladium (Ascomycota: Hypocreales). Transcriptomic data reveal that the fungal endosymbionts encode genes involved in vital metabolic processes for the host, such as essential amino acid biosynthesis, nitrogen recycling, and steroid biosynthesis. The genetic contribution of these endosymbionts to nutrient provision and metabolism supports a mutualistic obligate relationship with D. kuscheli. The results presented here provide insights into the evolutionary dynamics of endosymbiosis in the Delphacidae. Furthermore, this study highlights the potential of YLS as promising targets for innovative pest control strategies.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"74"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255559/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptome Analysis of the Fat Body of the Maize Pest Delphacodes kuscheli (Hemiptera: Delphacidae) Reveals Essential Roles of Fungal Endosymbionts.\",\"authors\":\"Agustina Pascual, Franco Calabresi, Daniela de la Fuente, M Inés Catalano, M Eugenia Brentassi\",\"doi\":\"10.1007/s00248-025-02572-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fat body of certain insects, in addition to performing essential biosynthetic and metabolic functions, harbors endosymbionts that play critical roles for their host. While knowledge of the diversity and functions of fungal endosymbionts harbored in the fat body of planthoppers is mostly limited to rice pests of Asia, our study presents a comprehensive transcriptomic analysis of the fat body of Delphacodes kuscheli (Hemiptera: Delphacidae), an important agricultural pest of maize in Argentina. The dominant fungal endosymbionts, identified as yeast-like symbionts (YLS), include members of the genera Ophiocordyceps, Cordyceps, Hirsutella, and Tolypocladium (Ascomycota: Hypocreales). Transcriptomic data reveal that the fungal endosymbionts encode genes involved in vital metabolic processes for the host, such as essential amino acid biosynthesis, nitrogen recycling, and steroid biosynthesis. The genetic contribution of these endosymbionts to nutrient provision and metabolism supports a mutualistic obligate relationship with D. kuscheli. The results presented here provide insights into the evolutionary dynamics of endosymbiosis in the Delphacidae. Furthermore, this study highlights the potential of YLS as promising targets for innovative pest control strategies.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"88 1\",\"pages\":\"74\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-025-02572-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02572-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Transcriptome Analysis of the Fat Body of the Maize Pest Delphacodes kuscheli (Hemiptera: Delphacidae) Reveals Essential Roles of Fungal Endosymbionts.
The fat body of certain insects, in addition to performing essential biosynthetic and metabolic functions, harbors endosymbionts that play critical roles for their host. While knowledge of the diversity and functions of fungal endosymbionts harbored in the fat body of planthoppers is mostly limited to rice pests of Asia, our study presents a comprehensive transcriptomic analysis of the fat body of Delphacodes kuscheli (Hemiptera: Delphacidae), an important agricultural pest of maize in Argentina. The dominant fungal endosymbionts, identified as yeast-like symbionts (YLS), include members of the genera Ophiocordyceps, Cordyceps, Hirsutella, and Tolypocladium (Ascomycota: Hypocreales). Transcriptomic data reveal that the fungal endosymbionts encode genes involved in vital metabolic processes for the host, such as essential amino acid biosynthesis, nitrogen recycling, and steroid biosynthesis. The genetic contribution of these endosymbionts to nutrient provision and metabolism supports a mutualistic obligate relationship with D. kuscheli. The results presented here provide insights into the evolutionary dynamics of endosymbiosis in the Delphacidae. Furthermore, this study highlights the potential of YLS as promising targets for innovative pest control strategies.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.