采用重加权优化方法的统一DNN权压缩框架

Mengchen Fan , Tianyun Zhang , Xiaolong Ma , Jiacheng Guo , Zheng Zhan , Shanglin Zhou , Minghai Qin , Caiwen Ding , Baocheng Geng , Makan Fardad , Yanzhi Wang
{"title":"采用重加权优化方法的统一DNN权压缩框架","authors":"Mengchen Fan ,&nbsp;Tianyun Zhang ,&nbsp;Xiaolong Ma ,&nbsp;Jiacheng Guo ,&nbsp;Zheng Zhan ,&nbsp;Shanglin Zhou ,&nbsp;Minghai Qin ,&nbsp;Caiwen Ding ,&nbsp;Baocheng Geng ,&nbsp;Makan Fardad ,&nbsp;Yanzhi Wang","doi":"10.1016/j.iswa.2025.200556","DOIUrl":null,"url":null,"abstract":"<div><div>To address the large model sizes and intensive computation requirements of deep neural networks (DNNs), weight pruning techniques have been proposed and generally fall into two categories: static regularization-based pruning and dynamic regularization-based pruning. However, the static method often leads to either complex operations or reduced accuracy, while the dynamic method requires extensive time to adjust parameters to maintain accuracy while achieving effective pruning. In this paper, we propose a unified robustness-aware framework for DNN weight pruning that dynamically updates regularization terms bounded by the designated constraint. This framework can generate both non-structured sparsity and different kinds of structured sparsity, and it incorporates adversarial training to enhance the robustness of the sparse model. We further extend our approach into an integrated framework capable of handling multiple DNN compression tasks. Experimental results show that our proposed method increases the compression rate – up to <span><math><mrow><mn>630</mn><mo>×</mo></mrow></math></span> for LeNet-5, <span><math><mrow><mn>45</mn><mo>×</mo></mrow></math></span> for AlexNet, <span><math><mrow><mn>7</mn><mo>.</mo><mn>2</mn><mo>×</mo></mrow></math></span> for MobileNet, <span><math><mrow><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo></mrow></math></span> for ResNet-50 – while also reducing training time and simplifying hyperparameter tuning to a <strong>single penalty parameter</strong>. Additionally, our method improves model robustness by <strong>5.07%</strong> for ResNet-18 and <strong>3.34%</strong> for VGG-16 under a 16×pruning rate, outperforming the state-of-the-art ADMM-based hard constraint method.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"27 ","pages":"Article 200556"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified DNN weight compression framework using reweighted optimization methods\",\"authors\":\"Mengchen Fan ,&nbsp;Tianyun Zhang ,&nbsp;Xiaolong Ma ,&nbsp;Jiacheng Guo ,&nbsp;Zheng Zhan ,&nbsp;Shanglin Zhou ,&nbsp;Minghai Qin ,&nbsp;Caiwen Ding ,&nbsp;Baocheng Geng ,&nbsp;Makan Fardad ,&nbsp;Yanzhi Wang\",\"doi\":\"10.1016/j.iswa.2025.200556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the large model sizes and intensive computation requirements of deep neural networks (DNNs), weight pruning techniques have been proposed and generally fall into two categories: static regularization-based pruning and dynamic regularization-based pruning. However, the static method often leads to either complex operations or reduced accuracy, while the dynamic method requires extensive time to adjust parameters to maintain accuracy while achieving effective pruning. In this paper, we propose a unified robustness-aware framework for DNN weight pruning that dynamically updates regularization terms bounded by the designated constraint. This framework can generate both non-structured sparsity and different kinds of structured sparsity, and it incorporates adversarial training to enhance the robustness of the sparse model. We further extend our approach into an integrated framework capable of handling multiple DNN compression tasks. Experimental results show that our proposed method increases the compression rate – up to <span><math><mrow><mn>630</mn><mo>×</mo></mrow></math></span> for LeNet-5, <span><math><mrow><mn>45</mn><mo>×</mo></mrow></math></span> for AlexNet, <span><math><mrow><mn>7</mn><mo>.</mo><mn>2</mn><mo>×</mo></mrow></math></span> for MobileNet, <span><math><mrow><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo></mrow></math></span> for ResNet-50 – while also reducing training time and simplifying hyperparameter tuning to a <strong>single penalty parameter</strong>. Additionally, our method improves model robustness by <strong>5.07%</strong> for ResNet-18 and <strong>3.34%</strong> for VGG-16 under a 16×pruning rate, outperforming the state-of-the-art ADMM-based hard constraint method.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"27 \",\"pages\":\"Article 200556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305325000821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决深度神经网络(dnn)模型规模大、计算量大的问题,权重剪枝技术被提出,一般分为静态正则化剪枝和动态正则化剪枝两大类。然而,静态方法往往导致操作复杂或精度降低,而动态方法需要大量的时间来调整参数以保持精度,同时实现有效的修剪。在本文中,我们提出了一个统一的DNN权剪枝的鲁棒感知框架,该框架可以动态更新受指定约束约束的正则化项。该框架既可以生成非结构化稀疏性,也可以生成不同类型的结构化稀疏性,并结合对抗训练增强了稀疏模型的鲁棒性。我们进一步将我们的方法扩展为一个能够处理多个DNN压缩任务的集成框架。实验结果表明,我们提出的方法提高了压缩率——LeNet-5的压缩率为630x, AlexNet的压缩率为45x, MobileNet的压缩率为7.2 x, ResNet-50的压缩率为3.2 x——同时还减少了训练时间,并将超参数调优简化为单个惩罚参数。此外,我们的方法在16×pruning速率下将ResNet-18的模型鲁棒性提高了5.07%,VGG-16的模型鲁棒性提高了3.34%,优于最先进的基于admm的硬约束方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified DNN weight compression framework using reweighted optimization methods
To address the large model sizes and intensive computation requirements of deep neural networks (DNNs), weight pruning techniques have been proposed and generally fall into two categories: static regularization-based pruning and dynamic regularization-based pruning. However, the static method often leads to either complex operations or reduced accuracy, while the dynamic method requires extensive time to adjust parameters to maintain accuracy while achieving effective pruning. In this paper, we propose a unified robustness-aware framework for DNN weight pruning that dynamically updates regularization terms bounded by the designated constraint. This framework can generate both non-structured sparsity and different kinds of structured sparsity, and it incorporates adversarial training to enhance the robustness of the sparse model. We further extend our approach into an integrated framework capable of handling multiple DNN compression tasks. Experimental results show that our proposed method increases the compression rate – up to 630× for LeNet-5, 45× for AlexNet, 7.2× for MobileNet, 3.2× for ResNet-50 – while also reducing training time and simplifying hyperparameter tuning to a single penalty parameter. Additionally, our method improves model robustness by 5.07% for ResNet-18 and 3.34% for VGG-16 under a 16×pruning rate, outperforming the state-of-the-art ADMM-based hard constraint method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信