用于等温,数字和多重检测的分离悬浮阵列。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Thomas Jet, Coline Kieffer, Yannick Rondelez, Valérie Taly, Guillaume Gines
{"title":"用于等温,数字和多重检测的分离悬浮阵列。","authors":"Thomas Jet, Coline Kieffer, Yannick Rondelez, Valérie Taly, Guillaume Gines","doi":"10.1021/jacs.5c07214","DOIUrl":null,"url":null,"abstract":"<p><p>The sensitive and accurate detection of panels of microRNA molecules is critical to enable their use as disease biomarkers. While microarrays and next-generation sequencing allow comprehensive miRNA profiling, they generally suffer from low accuracy and sensitivity. Conversely, digital bioassays such as digital PCR provide an absolute quantification with unrivaled sensitivity, although with limited multiplexing capabilities. In this work, we describe a novel microRNA profiling procedure, termed Digiplex, that combines the multiplexing power of a DNA-grafted suspension array with the accuracy of a digital flow cytometry readout. microRNAs are first captured on fluorescently encoded DNA-grafted particle populations following a Poisson distribution. The particles are subsequently isolated in microfluidic droplets, where single captured miRNA molecules trigger an isothermal exponential amplification that ultimately activates a fluorescent probe on the particle surface. Flow cytometry analysis yields the ratio of positive to negative particles for each targeted microRNA, allowing the reconstruction of the multiplex concentration profile in one go. After optimizing the workflow on a single microRNA model, we successfully developed a 10-plex assay with femtomolar sensitivity. The Digiplex method was finally validated on total RNA samples and benchmarked against droplet digital PCR.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compartmentalized Suspension Array for the Isothermal, Digital, and Multiplex Detection of microRNAs.\",\"authors\":\"Thomas Jet, Coline Kieffer, Yannick Rondelez, Valérie Taly, Guillaume Gines\",\"doi\":\"10.1021/jacs.5c07214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sensitive and accurate detection of panels of microRNA molecules is critical to enable their use as disease biomarkers. While microarrays and next-generation sequencing allow comprehensive miRNA profiling, they generally suffer from low accuracy and sensitivity. Conversely, digital bioassays such as digital PCR provide an absolute quantification with unrivaled sensitivity, although with limited multiplexing capabilities. In this work, we describe a novel microRNA profiling procedure, termed Digiplex, that combines the multiplexing power of a DNA-grafted suspension array with the accuracy of a digital flow cytometry readout. microRNAs are first captured on fluorescently encoded DNA-grafted particle populations following a Poisson distribution. The particles are subsequently isolated in microfluidic droplets, where single captured miRNA molecules trigger an isothermal exponential amplification that ultimately activates a fluorescent probe on the particle surface. Flow cytometry analysis yields the ratio of positive to negative particles for each targeted microRNA, allowing the reconstruction of the multiplex concentration profile in one go. After optimizing the workflow on a single microRNA model, we successfully developed a 10-plex assay with femtomolar sensitivity. The Digiplex method was finally validated on total RNA samples and benchmarked against droplet digital PCR.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c07214\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c07214","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对microRNA分子的敏感和准确检测对于使其成为疾病生物标志物至关重要。虽然微阵列和下一代测序允许全面的miRNA分析,但它们通常具有较低的准确性和灵敏度。相反,数字生物分析,如数字PCR提供了绝对定量与无与伦比的灵敏度,尽管有限的多路复用能力。在这项工作中,我们描述了一种新的microRNA分析程序,称为Digiplex,它结合了dna嫁接悬浮阵列的多路复用能力和数字流式细胞术读数的准确性。microrna首先被捕获到荧光编码的dna嫁接粒子群上,这些粒子群遵循泊松分布。这些颗粒随后被分离到微流体液滴中,其中单个捕获的miRNA分子触发等温指数扩增,最终激活颗粒表面的荧光探针。流式细胞术分析得出每个靶向microRNA的阳性和阴性颗粒的比例,从而可以一次重建多重浓度谱。在优化了单个microRNA模型的工作流程后,我们成功开发了一种具有飞摩尔灵敏度的10-plex检测方法。Digiplex方法最终在总RNA样本上进行了验证,并与液滴数字PCR进行了对照。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compartmentalized Suspension Array for the Isothermal, Digital, and Multiplex Detection of microRNAs.

The sensitive and accurate detection of panels of microRNA molecules is critical to enable their use as disease biomarkers. While microarrays and next-generation sequencing allow comprehensive miRNA profiling, they generally suffer from low accuracy and sensitivity. Conversely, digital bioassays such as digital PCR provide an absolute quantification with unrivaled sensitivity, although with limited multiplexing capabilities. In this work, we describe a novel microRNA profiling procedure, termed Digiplex, that combines the multiplexing power of a DNA-grafted suspension array with the accuracy of a digital flow cytometry readout. microRNAs are first captured on fluorescently encoded DNA-grafted particle populations following a Poisson distribution. The particles are subsequently isolated in microfluidic droplets, where single captured miRNA molecules trigger an isothermal exponential amplification that ultimately activates a fluorescent probe on the particle surface. Flow cytometry analysis yields the ratio of positive to negative particles for each targeted microRNA, allowing the reconstruction of the multiplex concentration profile in one go. After optimizing the workflow on a single microRNA model, we successfully developed a 10-plex assay with femtomolar sensitivity. The Digiplex method was finally validated on total RNA samples and benchmarked against droplet digital PCR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信