Ananya Nair, Allison J Yearwood, Brandi N Besednjak, Mikayla M Cully, Reece Turner, Joseph L Bedont
{"title":"低温饲养揭示了果蝇阿尔茨海默病模型的睡眠中断。","authors":"Ananya Nair, Allison J Yearwood, Brandi N Besednjak, Mikayla M Cully, Reece Turner, Joseph L Bedont","doi":"10.17912/micropub.biology.001689","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic sleep loss is a risk factor for Alzheimer's disease (AD), and reduced and fragmented sleep is increasingly appreciated as an early-onset diagnostic and potential therapeutic target for AD. However, robustly modeling AD-like sleep deficits in fruit flies has often been challenging. We report that cold-raising unmasks deficits in sleep duration, fragmentation, and latency in one such model pan-neuronally expressing a highly pathogenic AD-associated amyloid species. This sensitized model provides a promising platform for identifying potential metabolic, proteostatic, glymphatic, and other candidate mediators bidirectionally linking sleep and AD.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cold-raising unmasks sleep disruption in a <i>Drosophila</i> Alzheimer's disease model.\",\"authors\":\"Ananya Nair, Allison J Yearwood, Brandi N Besednjak, Mikayla M Cully, Reece Turner, Joseph L Bedont\",\"doi\":\"10.17912/micropub.biology.001689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic sleep loss is a risk factor for Alzheimer's disease (AD), and reduced and fragmented sleep is increasingly appreciated as an early-onset diagnostic and potential therapeutic target for AD. However, robustly modeling AD-like sleep deficits in fruit flies has often been challenging. We report that cold-raising unmasks deficits in sleep duration, fragmentation, and latency in one such model pan-neuronally expressing a highly pathogenic AD-associated amyloid species. This sensitized model provides a promising platform for identifying potential metabolic, proteostatic, glymphatic, and other candidate mediators bidirectionally linking sleep and AD.</p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Cold-raising unmasks sleep disruption in a Drosophila Alzheimer's disease model.
Chronic sleep loss is a risk factor for Alzheimer's disease (AD), and reduced and fragmented sleep is increasingly appreciated as an early-onset diagnostic and potential therapeutic target for AD. However, robustly modeling AD-like sleep deficits in fruit flies has often been challenging. We report that cold-raising unmasks deficits in sleep duration, fragmentation, and latency in one such model pan-neuronally expressing a highly pathogenic AD-associated amyloid species. This sensitized model provides a promising platform for identifying potential metabolic, proteostatic, glymphatic, and other candidate mediators bidirectionally linking sleep and AD.