Yingying Ji, Pengcheng Xia, Yan Wang, Yang Liu, Feng Wang, Fenggang Sun, Qiang Feng, Qingbin Ni, Yi Li
{"title":"多囊卵巢和类风湿关节炎的共同发病机制:关键基因和途径的分析。","authors":"Yingying Ji, Pengcheng Xia, Yan Wang, Yang Liu, Feng Wang, Fenggang Sun, Qiang Feng, Qingbin Ni, Yi Li","doi":"10.3389/fgene.2025.1554139","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aims to explore the potential shared pathogenic processes between PCOS and RA through bioinformatics analysis to identify novel therapeutic targets and biomarkers for disease management.</p><p><strong>Methods: </strong>Microarray datasets for polycystic ovary and RA were obtained from the GEO database. Differential gene expression analysis identified commonly dysregulated genes in both conditions. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to understand the biological processes and pathways associated with the differentially expressed genes (DEGs). Protein interaction analysis, machine learning algorithms, and validation analyses were employed to identify core genes with potential diagnostic value. Immune cell infiltration analysis and evaluation of hypoxia and angiogenesis scores were conducted to assess the role of the core genes in immune-related disorders.</p><p><strong>Results: </strong>Microarray analysis identified differentially expressed genes (DEGs) commonly dysregulated in PCOS and RA. GO and KEGG enrichment analyses highlighted the involvement of cell death, inflammation, and redox pathways. Ten key genes were identified through protein interaction analysis, and machine learning further narrowed it down to six core genes: CSTA, DPH3, CAPZA2, GLRX, CD58, and IFIT1. The core genes were overexpressed in PCOS and RA tissues, suggesting their potential involvement in disease development. Validation analyses confirmed the diagnostic potential of these genes, especially in RA. Immune cell infiltration analysis correlated the expression of core genes with neutrophil and CD8<sup>+</sup> T cell infiltration. Hypoxia and angiogenesis scores indicated the significance of these genes in immune-related disorders.</p><p><strong>Conclusion: </strong>The study unveils potential molecular links between PCOS and RA, highlighting the importance of immune dysregulation in their pathogenesis. The identified core genes offer novel therapeutic targets and potential biomarkers for disease management, providing insights into the complex interplay between these two seemingly unrelated conditions.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1554139"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shared pathogenesis in polycystic ovaries and rheumatoid arthritis: an analysis of key genes and pathways.\",\"authors\":\"Yingying Ji, Pengcheng Xia, Yan Wang, Yang Liu, Feng Wang, Fenggang Sun, Qiang Feng, Qingbin Ni, Yi Li\",\"doi\":\"10.3389/fgene.2025.1554139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The study aims to explore the potential shared pathogenic processes between PCOS and RA through bioinformatics analysis to identify novel therapeutic targets and biomarkers for disease management.</p><p><strong>Methods: </strong>Microarray datasets for polycystic ovary and RA were obtained from the GEO database. Differential gene expression analysis identified commonly dysregulated genes in both conditions. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to understand the biological processes and pathways associated with the differentially expressed genes (DEGs). Protein interaction analysis, machine learning algorithms, and validation analyses were employed to identify core genes with potential diagnostic value. Immune cell infiltration analysis and evaluation of hypoxia and angiogenesis scores were conducted to assess the role of the core genes in immune-related disorders.</p><p><strong>Results: </strong>Microarray analysis identified differentially expressed genes (DEGs) commonly dysregulated in PCOS and RA. GO and KEGG enrichment analyses highlighted the involvement of cell death, inflammation, and redox pathways. Ten key genes were identified through protein interaction analysis, and machine learning further narrowed it down to six core genes: CSTA, DPH3, CAPZA2, GLRX, CD58, and IFIT1. The core genes were overexpressed in PCOS and RA tissues, suggesting their potential involvement in disease development. Validation analyses confirmed the diagnostic potential of these genes, especially in RA. Immune cell infiltration analysis correlated the expression of core genes with neutrophil and CD8<sup>+</sup> T cell infiltration. Hypoxia and angiogenesis scores indicated the significance of these genes in immune-related disorders.</p><p><strong>Conclusion: </strong>The study unveils potential molecular links between PCOS and RA, highlighting the importance of immune dysregulation in their pathogenesis. The identified core genes offer novel therapeutic targets and potential biomarkers for disease management, providing insights into the complex interplay between these two seemingly unrelated conditions.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1554139\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1554139\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1554139","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Shared pathogenesis in polycystic ovaries and rheumatoid arthritis: an analysis of key genes and pathways.
Objective: The study aims to explore the potential shared pathogenic processes between PCOS and RA through bioinformatics analysis to identify novel therapeutic targets and biomarkers for disease management.
Methods: Microarray datasets for polycystic ovary and RA were obtained from the GEO database. Differential gene expression analysis identified commonly dysregulated genes in both conditions. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to understand the biological processes and pathways associated with the differentially expressed genes (DEGs). Protein interaction analysis, machine learning algorithms, and validation analyses were employed to identify core genes with potential diagnostic value. Immune cell infiltration analysis and evaluation of hypoxia and angiogenesis scores were conducted to assess the role of the core genes in immune-related disorders.
Results: Microarray analysis identified differentially expressed genes (DEGs) commonly dysregulated in PCOS and RA. GO and KEGG enrichment analyses highlighted the involvement of cell death, inflammation, and redox pathways. Ten key genes were identified through protein interaction analysis, and machine learning further narrowed it down to six core genes: CSTA, DPH3, CAPZA2, GLRX, CD58, and IFIT1. The core genes were overexpressed in PCOS and RA tissues, suggesting their potential involvement in disease development. Validation analyses confirmed the diagnostic potential of these genes, especially in RA. Immune cell infiltration analysis correlated the expression of core genes with neutrophil and CD8+ T cell infiltration. Hypoxia and angiogenesis scores indicated the significance of these genes in immune-related disorders.
Conclusion: The study unveils potential molecular links between PCOS and RA, highlighting the importance of immune dysregulation in their pathogenesis. The identified core genes offer novel therapeutic targets and potential biomarkers for disease management, providing insights into the complex interplay between these two seemingly unrelated conditions.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.