Hieng Chiong Tie, Haiyun Wang, Divyanshu Mahajan, Hilbert Yuen In Lam, Xiuping Sun, Bing Chen, Yuguang Mu, Lei Lu
{"title":"定量的高尔基体内部运输和组织数据表明高尔基体具有稳定的隔室性质。","authors":"Hieng Chiong Tie, Haiyun Wang, Divyanshu Mahajan, Hilbert Yuen In Lam, Xiuping Sun, Bing Chen, Yuguang Mu, Lei Lu","doi":"10.7554/eLife.98582","DOIUrl":null,"url":null,"abstract":"<p><p>How the intra-Golgi secretory transport works remains a mystery. The cisternal progression and the stable compartment models have been proposed and are under debate. Classic cisternal progression model posits that both the intra-Golgi transport and Golgi exit of secretory cargos should occur at a constant velocity dictated by the cisternal progression; furthermore, COPI-mediated intra-Golgi retrograde transport is essential for maintaining the Golgi organization. Leveraging our recently developed Golgi imaging tools in nocodazole-induced Golgi ministacks, we found that the intra-Golgi transport velocity of a secretory cargo decreases during their transition from the <i>cis</i> to the <i>trans</i>-side of the Golgi, and different cargos exhibit distinct velocities even within the same cisternae. We observed a vast variation in the Golgi residence times of different cargos. Remarkably, truncation of the luminal domain causes the Golgi residence time of Tac - a standard transmembrane secretory cargo without intra-Golgi recycling signals - to extend from 16 min to a notable 3.4 hr. Additionally, when COPI-mediated intra-Golgi retrograde transport was inhibited by brefeldin A, we found that nocodazole-induced Golgi can remain stacked for over 30-60 min. Therefore, our findings challenge the classical cisternal progression model and suggest the stable compartment nature of the Golgi.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237403/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative intra-Golgi transport and organization data suggest the stable compartment nature of the Golgi.\",\"authors\":\"Hieng Chiong Tie, Haiyun Wang, Divyanshu Mahajan, Hilbert Yuen In Lam, Xiuping Sun, Bing Chen, Yuguang Mu, Lei Lu\",\"doi\":\"10.7554/eLife.98582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How the intra-Golgi secretory transport works remains a mystery. The cisternal progression and the stable compartment models have been proposed and are under debate. Classic cisternal progression model posits that both the intra-Golgi transport and Golgi exit of secretory cargos should occur at a constant velocity dictated by the cisternal progression; furthermore, COPI-mediated intra-Golgi retrograde transport is essential for maintaining the Golgi organization. Leveraging our recently developed Golgi imaging tools in nocodazole-induced Golgi ministacks, we found that the intra-Golgi transport velocity of a secretory cargo decreases during their transition from the <i>cis</i> to the <i>trans</i>-side of the Golgi, and different cargos exhibit distinct velocities even within the same cisternae. We observed a vast variation in the Golgi residence times of different cargos. Remarkably, truncation of the luminal domain causes the Golgi residence time of Tac - a standard transmembrane secretory cargo without intra-Golgi recycling signals - to extend from 16 min to a notable 3.4 hr. Additionally, when COPI-mediated intra-Golgi retrograde transport was inhibited by brefeldin A, we found that nocodazole-induced Golgi can remain stacked for over 30-60 min. Therefore, our findings challenge the classical cisternal progression model and suggest the stable compartment nature of the Golgi.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237403/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.98582\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.98582","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Quantitative intra-Golgi transport and organization data suggest the stable compartment nature of the Golgi.
How the intra-Golgi secretory transport works remains a mystery. The cisternal progression and the stable compartment models have been proposed and are under debate. Classic cisternal progression model posits that both the intra-Golgi transport and Golgi exit of secretory cargos should occur at a constant velocity dictated by the cisternal progression; furthermore, COPI-mediated intra-Golgi retrograde transport is essential for maintaining the Golgi organization. Leveraging our recently developed Golgi imaging tools in nocodazole-induced Golgi ministacks, we found that the intra-Golgi transport velocity of a secretory cargo decreases during their transition from the cis to the trans-side of the Golgi, and different cargos exhibit distinct velocities even within the same cisternae. We observed a vast variation in the Golgi residence times of different cargos. Remarkably, truncation of the luminal domain causes the Golgi residence time of Tac - a standard transmembrane secretory cargo without intra-Golgi recycling signals - to extend from 16 min to a notable 3.4 hr. Additionally, when COPI-mediated intra-Golgi retrograde transport was inhibited by brefeldin A, we found that nocodazole-induced Golgi can remain stacked for over 30-60 min. Therefore, our findings challenge the classical cisternal progression model and suggest the stable compartment nature of the Golgi.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.