对小剪接体的抑制限制了多种癌症的生长。

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karen Doggett, Kimberly J Morgan, Anouk M Olthof, Stephen Mieruszynski, Benjamin B Williams, Alexandra L Garnham, Michael J G Milevskiy, Lachlan Whitehead, Janine Coates, Michael Buchert, Robert J J O'Donoghue, Thomas E Hall, Tracy L Putoczki, Matthias Ernst, Kate D Sutherland, Rahul N Kanadia, Joan K Heath
{"title":"对小剪接体的抑制限制了多种癌症的生长。","authors":"Karen Doggett, Kimberly J Morgan, Anouk M Olthof, Stephen Mieruszynski, Benjamin B Williams, Alexandra L Garnham, Michael J G Milevskiy, Lachlan Whitehead, Janine Coates, Michael Buchert, Robert J J O'Donoghue, Thomas E Hall, Tracy L Putoczki, Matthias Ernst, Kate D Sutherland, Rahul N Kanadia, Joan K Heath","doi":"10.1038/s44319-025-00511-8","DOIUrl":null,"url":null,"abstract":"<p><p>Minor splicing is an under-appreciated splicing system required for the correct expression of ~700 genes in the human genome. This small subset of genes (0.35%) harbours introns containing non-canonical splicing sequences that are recognised uniquely by the minor spliceosome and cannot be processed by the major spliceosome. Using in vivo zebrafish and mouse cancer models, we show that heterozygous expression of Rnpc3, encoding a unique protein component of the minor spliceosome, restricts the growth and survival of liver, lung and gastric tumours without impacting healthy cells. RNPC3 knockdown in human lung cancer-derived A549 cells also impairs cell proliferation and RNA-seq analysis reveals a robust and selective disruption to minor intron splicing and transcription-wide effects on gene expression. We further demonstrate that these perturbations are accompanied by DNA replication stress, DNA damage, accumulation of TP53 protein and activation of a Tp53-dependent transcriptional program that induces cell cycle arrest and apoptosis. Together our data reveal a vulnerability of cancer cells to minor splicing inhibition that restricts tumour growth.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of the minor spliceosome restricts the growth of a broad spectrum of cancers.\",\"authors\":\"Karen Doggett, Kimberly J Morgan, Anouk M Olthof, Stephen Mieruszynski, Benjamin B Williams, Alexandra L Garnham, Michael J G Milevskiy, Lachlan Whitehead, Janine Coates, Michael Buchert, Robert J J O'Donoghue, Thomas E Hall, Tracy L Putoczki, Matthias Ernst, Kate D Sutherland, Rahul N Kanadia, Joan K Heath\",\"doi\":\"10.1038/s44319-025-00511-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Minor splicing is an under-appreciated splicing system required for the correct expression of ~700 genes in the human genome. This small subset of genes (0.35%) harbours introns containing non-canonical splicing sequences that are recognised uniquely by the minor spliceosome and cannot be processed by the major spliceosome. Using in vivo zebrafish and mouse cancer models, we show that heterozygous expression of Rnpc3, encoding a unique protein component of the minor spliceosome, restricts the growth and survival of liver, lung and gastric tumours without impacting healthy cells. RNPC3 knockdown in human lung cancer-derived A549 cells also impairs cell proliferation and RNA-seq analysis reveals a robust and selective disruption to minor intron splicing and transcription-wide effects on gene expression. We further demonstrate that these perturbations are accompanied by DNA replication stress, DNA damage, accumulation of TP53 protein and activation of a Tp53-dependent transcriptional program that induces cell cycle arrest and apoptosis. Together our data reveal a vulnerability of cancer cells to minor splicing inhibition that restricts tumour growth.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00511-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00511-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

次要剪接是人类基因组中约700个基因正确表达所必需的剪接系统。这一小部分基因(0.35%)含有内含子,内含子含有非规范剪接序列,这些序列只能被小剪接体识别,不能被主剪接体处理。利用斑马鱼和小鼠体内癌症模型,我们发现编码次要剪接体独特蛋白质成分的Rnpc3的杂合表达限制了肝脏、肺和胃肿瘤的生长和存活,而不影响健康细胞。在人肺癌源性A549细胞中,RNPC3敲低也会损害细胞增殖,RNA-seq分析显示,RNPC3敲低会对内含子剪接和转录范围内的基因表达产生强烈的选择性破坏。我们进一步证明,这些扰动伴随着DNA复制应激、DNA损伤、TP53蛋白积累和TP53依赖转录程序的激活,从而诱导细胞周期阻滞和凋亡。总之,我们的数据揭示了癌细胞对限制肿瘤生长的轻微剪接抑制的脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of the minor spliceosome restricts the growth of a broad spectrum of cancers.

Minor splicing is an under-appreciated splicing system required for the correct expression of ~700 genes in the human genome. This small subset of genes (0.35%) harbours introns containing non-canonical splicing sequences that are recognised uniquely by the minor spliceosome and cannot be processed by the major spliceosome. Using in vivo zebrafish and mouse cancer models, we show that heterozygous expression of Rnpc3, encoding a unique protein component of the minor spliceosome, restricts the growth and survival of liver, lung and gastric tumours without impacting healthy cells. RNPC3 knockdown in human lung cancer-derived A549 cells also impairs cell proliferation and RNA-seq analysis reveals a robust and selective disruption to minor intron splicing and transcription-wide effects on gene expression. We further demonstrate that these perturbations are accompanied by DNA replication stress, DNA damage, accumulation of TP53 protein and activation of a Tp53-dependent transcriptional program that induces cell cycle arrest and apoptosis. Together our data reveal a vulnerability of cancer cells to minor splicing inhibition that restricts tumour growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信