基于人工神经网络的低合金钢疲劳性能评价

Tea Marohnić , Robert Basan
{"title":"基于人工神经网络的低合金钢疲劳性能评价","authors":"Tea Marohnić ,&nbsp;Robert Basan","doi":"10.1016/j.prostr.2025.06.026","DOIUrl":null,"url":null,"abstract":"<div><div>In the literature, numerous empirical and machine learning-based techniques for estimation of strain-life fatigue parameters from monotonic properties have been proposed. Existing machine learning-based methods are evaluated in different manners, making their comparison difficult. Most authors use metrics such as root mean square error <em>RMSE</em> and neglect fatigue life estimations criteria, or use only conventional error criterion <em>E</em><sub>f</sub>(<em>s</em>). In this study, ANNs developed for estimation of fatigue parameters have been evaluated regarding their accuracy and applicability for estimation of low- and high-cycle fatigue lives of low-alloy steels, further divided into low- and high-strength subgroups.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"68 ","pages":"Pages 84-90"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of artificial neural networks developed for estimation of fatigue behavior of low-alloy steels\",\"authors\":\"Tea Marohnić ,&nbsp;Robert Basan\",\"doi\":\"10.1016/j.prostr.2025.06.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the literature, numerous empirical and machine learning-based techniques for estimation of strain-life fatigue parameters from monotonic properties have been proposed. Existing machine learning-based methods are evaluated in different manners, making their comparison difficult. Most authors use metrics such as root mean square error <em>RMSE</em> and neglect fatigue life estimations criteria, or use only conventional error criterion <em>E</em><sub>f</sub>(<em>s</em>). In this study, ANNs developed for estimation of fatigue parameters have been evaluated regarding their accuracy and applicability for estimation of low- and high-cycle fatigue lives of low-alloy steels, further divided into low- and high-strength subgroups.</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"68 \",\"pages\":\"Pages 84-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文献中,已经提出了许多基于经验和机器学习的技术,用于从单调特性估计应变寿命疲劳参数。现有的基于机器学习的方法以不同的方式进行评估,使得它们的比较变得困难。大多数作者使用诸如均方根误差RMSE之类的度量,而忽略了疲劳寿命估计标准,或者只使用传统的误差标准Ef(s)。在这项研究中,已经评估了用于估计疲劳参数的人工神经网络在估计低合金钢的低周和高周疲劳寿命方面的准确性和适用性,并进一步分为低强度和高强度亚组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of artificial neural networks developed for estimation of fatigue behavior of low-alloy steels
In the literature, numerous empirical and machine learning-based techniques for estimation of strain-life fatigue parameters from monotonic properties have been proposed. Existing machine learning-based methods are evaluated in different manners, making their comparison difficult. Most authors use metrics such as root mean square error RMSE and neglect fatigue life estimations criteria, or use only conventional error criterion Ef(s). In this study, ANNs developed for estimation of fatigue parameters have been evaluated regarding their accuracy and applicability for estimation of low- and high-cycle fatigue lives of low-alloy steels, further divided into low- and high-strength subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信