{"title":"基于生物信息学和机器学习的溃疡性结肠炎中性粒细胞胞外陷阱相关生物标志物鉴定。","authors":"Jiao Li, Yupei Liu, Zhiyi Sun, Suqi Zeng, Caisong Zheng","doi":"10.3389/fgene.2025.1589999","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The incidence of ulcerative colitis (UC) is rapidly increasing worldwide, but existing therapeutics are limited. Neutrophil extracellular traps (NETs), which have been associated with the development of various autoimmune diseases, may serve as a novel therapeutic target for UC treatment.</p><p><strong>Methods: </strong>Bioinformatics analysis was performed to investigate UC-related datasets downloaded from the GEO database, including GSE87466, GSE75214, and GSE206285. Differentially expressed genes (DEGs) related to NETs in UC patients and healthy controls were identified using Limma R package and WGCNA, followed by functional enrichment analysis. To identify potential diagnostic biomarkers, we applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model, and Random Forest (RF) algorithm, and constructed Receiver Operating Characteristic (ROC) curves to evaluate accuracy. Additionally, immune infiltration analysis was conducted to identify immune cells potentially involved in the regulation of NETs. Finally, the expression of core genes in patients was validated using Quantitative real-time PCR (qRT-PCR), and potential therapeutic drugs for UC were explored through drug target databases.</p><p><strong>Result: </strong>Differential analysis of transcriptomic sequencing data from UC samples identified 29 DEGs related to NETs. Enrichment analysis showed that these genes primarily mediate UC-related damage through biological functions such as leukocyte activation, migration, immune receptor activity, and the IL-17 signaling pathway. Three machine learning algorithms successfully identified core NETs-related genes in UC (IL1B, MMP9 and DYSF). According to ROC analysis, all three demonstrated excellent diagnostic efficacy. Additionally, Immune infiltration analysis revealed that the expression of these core genes was closely associated with neutrophils infiltration and CD4<sup>+</sup> memory T cell activation, and negatively associated with M2 macrophage infiltration. qRT-PCR showed that the core genes were significantly overexpressed in UC patients. Gevokizumab, canakinumab and carboxylated glucosamine were predicted as potential therapeutic drugs for UC.</p><p><strong>Conclusion: </strong>By combining three machine learning algorithms and bioinformatics, this research identified three hub genes that could serve as novel targets for the diagnosis and therapy of UC, which may provide valuable insights into the mechanism of NETs in UC and potential related therapies.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1589999"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of neutrophil extracellular trap-related biomarkers in ulcerative colitis based on bioinformatics and machine learning.\",\"authors\":\"Jiao Li, Yupei Liu, Zhiyi Sun, Suqi Zeng, Caisong Zheng\",\"doi\":\"10.3389/fgene.2025.1589999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The incidence of ulcerative colitis (UC) is rapidly increasing worldwide, but existing therapeutics are limited. Neutrophil extracellular traps (NETs), which have been associated with the development of various autoimmune diseases, may serve as a novel therapeutic target for UC treatment.</p><p><strong>Methods: </strong>Bioinformatics analysis was performed to investigate UC-related datasets downloaded from the GEO database, including GSE87466, GSE75214, and GSE206285. Differentially expressed genes (DEGs) related to NETs in UC patients and healthy controls were identified using Limma R package and WGCNA, followed by functional enrichment analysis. To identify potential diagnostic biomarkers, we applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model, and Random Forest (RF) algorithm, and constructed Receiver Operating Characteristic (ROC) curves to evaluate accuracy. Additionally, immune infiltration analysis was conducted to identify immune cells potentially involved in the regulation of NETs. Finally, the expression of core genes in patients was validated using Quantitative real-time PCR (qRT-PCR), and potential therapeutic drugs for UC were explored through drug target databases.</p><p><strong>Result: </strong>Differential analysis of transcriptomic sequencing data from UC samples identified 29 DEGs related to NETs. Enrichment analysis showed that these genes primarily mediate UC-related damage through biological functions such as leukocyte activation, migration, immune receptor activity, and the IL-17 signaling pathway. Three machine learning algorithms successfully identified core NETs-related genes in UC (IL1B, MMP9 and DYSF). According to ROC analysis, all three demonstrated excellent diagnostic efficacy. Additionally, Immune infiltration analysis revealed that the expression of these core genes was closely associated with neutrophils infiltration and CD4<sup>+</sup> memory T cell activation, and negatively associated with M2 macrophage infiltration. qRT-PCR showed that the core genes were significantly overexpressed in UC patients. Gevokizumab, canakinumab and carboxylated glucosamine were predicted as potential therapeutic drugs for UC.</p><p><strong>Conclusion: </strong>By combining three machine learning algorithms and bioinformatics, this research identified three hub genes that could serve as novel targets for the diagnosis and therapy of UC, which may provide valuable insights into the mechanism of NETs in UC and potential related therapies.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1589999\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1589999\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1589999","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Identification of neutrophil extracellular trap-related biomarkers in ulcerative colitis based on bioinformatics and machine learning.
Background: The incidence of ulcerative colitis (UC) is rapidly increasing worldwide, but existing therapeutics are limited. Neutrophil extracellular traps (NETs), which have been associated with the development of various autoimmune diseases, may serve as a novel therapeutic target for UC treatment.
Methods: Bioinformatics analysis was performed to investigate UC-related datasets downloaded from the GEO database, including GSE87466, GSE75214, and GSE206285. Differentially expressed genes (DEGs) related to NETs in UC patients and healthy controls were identified using Limma R package and WGCNA, followed by functional enrichment analysis. To identify potential diagnostic biomarkers, we applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model, and Random Forest (RF) algorithm, and constructed Receiver Operating Characteristic (ROC) curves to evaluate accuracy. Additionally, immune infiltration analysis was conducted to identify immune cells potentially involved in the regulation of NETs. Finally, the expression of core genes in patients was validated using Quantitative real-time PCR (qRT-PCR), and potential therapeutic drugs for UC were explored through drug target databases.
Result: Differential analysis of transcriptomic sequencing data from UC samples identified 29 DEGs related to NETs. Enrichment analysis showed that these genes primarily mediate UC-related damage through biological functions such as leukocyte activation, migration, immune receptor activity, and the IL-17 signaling pathway. Three machine learning algorithms successfully identified core NETs-related genes in UC (IL1B, MMP9 and DYSF). According to ROC analysis, all three demonstrated excellent diagnostic efficacy. Additionally, Immune infiltration analysis revealed that the expression of these core genes was closely associated with neutrophils infiltration and CD4+ memory T cell activation, and negatively associated with M2 macrophage infiltration. qRT-PCR showed that the core genes were significantly overexpressed in UC patients. Gevokizumab, canakinumab and carboxylated glucosamine were predicted as potential therapeutic drugs for UC.
Conclusion: By combining three machine learning algorithms and bioinformatics, this research identified three hub genes that could serve as novel targets for the diagnosis and therapy of UC, which may provide valuable insights into the mechanism of NETs in UC and potential related therapies.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.