推进边缘聚类和图嵌入生物网络分析:RASopathies的案例研究。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Federico García-Criado, Pedro Seoane, Elena Rojano, Juan A G Ranea, James R Perkins
{"title":"推进边缘聚类和图嵌入生物网络分析:RASopathies的案例研究。","authors":"Federico García-Criado, Pedro Seoane, Elena Rojano, Juan A G Ranea, James R Perkins","doi":"10.1093/bib/bbaf320","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding and predicting biological processes from protein-protein interaction (PPI) networks requires accurate and efficient representations of their structure. However, many existing methods fail to capture the complex, overlapping modular structure of biological systems. To address this, we propose a network embedding strategy that improves both biological interpretability and predictive power. By transforming networks into a low-dimensional space while preserving key topological properties, embedding enables the discovery of novel functional relationships. Pre-clustering a network before embedding enhances representation quality, i.e. the ability to preserve meaningful structural and functional properties in the embedding space. However, traditional non-overlapping clustering methods can introduce bias by ignoring the overlapping nature of biological communities. We overcome this limitation by integrating the Hierarchical Link Clustering (HLC) algorithm into an embedding workflow tailored for large, weighted, undirected networks. First, we introduce two optimized HLC implementations for Python and R, both outperforming existing methods in clustering accuracy and scalability. Then, by restricting random walks to HLC-defined communities, we improve the representation of biological pathways, as shown using Reactome on the human PPI network. We also apply our full cluster embedding workflow to analyze RASopathies, a group of interrelated disorders with a diverse range of phenotypes, caused by mutations in genes from the RAS/MAPK pathway. This approach was used not only to represent known pathways, but also to identify potential novel gene candidates associated with RASopathies, including Noonan and Costello syndrome. HLC implementations are available in the CDLIB library (https://github.com/GiulioRossetti/cdlib), and at https://github.com/jimrperkins/linkcomm for Python and R, respectively.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing edge-based clustering and graph embedding for biological network analysis: a case study in RASopathies.\",\"authors\":\"Federico García-Criado, Pedro Seoane, Elena Rojano, Juan A G Ranea, James R Perkins\",\"doi\":\"10.1093/bib/bbaf320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding and predicting biological processes from protein-protein interaction (PPI) networks requires accurate and efficient representations of their structure. However, many existing methods fail to capture the complex, overlapping modular structure of biological systems. To address this, we propose a network embedding strategy that improves both biological interpretability and predictive power. By transforming networks into a low-dimensional space while preserving key topological properties, embedding enables the discovery of novel functional relationships. Pre-clustering a network before embedding enhances representation quality, i.e. the ability to preserve meaningful structural and functional properties in the embedding space. However, traditional non-overlapping clustering methods can introduce bias by ignoring the overlapping nature of biological communities. We overcome this limitation by integrating the Hierarchical Link Clustering (HLC) algorithm into an embedding workflow tailored for large, weighted, undirected networks. First, we introduce two optimized HLC implementations for Python and R, both outperforming existing methods in clustering accuracy and scalability. Then, by restricting random walks to HLC-defined communities, we improve the representation of biological pathways, as shown using Reactome on the human PPI network. We also apply our full cluster embedding workflow to analyze RASopathies, a group of interrelated disorders with a diverse range of phenotypes, caused by mutations in genes from the RAS/MAPK pathway. This approach was used not only to represent known pathways, but also to identify potential novel gene candidates associated with RASopathies, including Noonan and Costello syndrome. HLC implementations are available in the CDLIB library (https://github.com/GiulioRossetti/cdlib), and at https://github.com/jimrperkins/linkcomm for Python and R, respectively.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf320\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf320","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

从蛋白质-蛋白质相互作用(PPI)网络中理解和预测生物过程需要对其结构进行准确和有效的表征。然而,许多现有的方法无法捕捉生物系统的复杂,重叠的模块化结构。为了解决这个问题,我们提出了一种网络嵌入策略,可以提高生物可解释性和预测能力。通过将网络转换为低维空间,同时保留关键的拓扑属性,嵌入可以发现新的功能关系。在嵌入之前对网络进行预聚类可以提高表征质量,即在嵌入空间中保留有意义的结构和功能属性的能力。然而,传统的非重叠聚类方法忽略了生物群落的重叠特性,容易引入偏差。我们通过将层次链接聚类(HLC)算法集成到为大型、加权、无向网络量身定制的嵌入工作流中来克服这一限制。首先,我们介绍了两种针对Python和R的优化HLC实现,它们在聚类精度和可扩展性方面都优于现有方法。然后,通过将随机漫步限制在hlc定义的社区,我们改进了生物通路的表示,如在人类PPI网络上使用Reactome所示。我们还应用完整的聚类嵌入工作流程来分析RASopathies,这是一组由RAS/MAPK通路基因突变引起的具有多种表型的相关疾病。这种方法不仅用于表示已知的途径,而且还用于识别与RASopathies(包括Noonan和Costello综合征)相关的潜在的新候选基因。HLC实现可在CDLIB库(https://github.com/GiulioRossetti/cdlib)和https://github.com/jimrperkins/linkcomm中获得,分别适用于Python和R。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing edge-based clustering and graph embedding for biological network analysis: a case study in RASopathies.

Understanding and predicting biological processes from protein-protein interaction (PPI) networks requires accurate and efficient representations of their structure. However, many existing methods fail to capture the complex, overlapping modular structure of biological systems. To address this, we propose a network embedding strategy that improves both biological interpretability and predictive power. By transforming networks into a low-dimensional space while preserving key topological properties, embedding enables the discovery of novel functional relationships. Pre-clustering a network before embedding enhances representation quality, i.e. the ability to preserve meaningful structural and functional properties in the embedding space. However, traditional non-overlapping clustering methods can introduce bias by ignoring the overlapping nature of biological communities. We overcome this limitation by integrating the Hierarchical Link Clustering (HLC) algorithm into an embedding workflow tailored for large, weighted, undirected networks. First, we introduce two optimized HLC implementations for Python and R, both outperforming existing methods in clustering accuracy and scalability. Then, by restricting random walks to HLC-defined communities, we improve the representation of biological pathways, as shown using Reactome on the human PPI network. We also apply our full cluster embedding workflow to analyze RASopathies, a group of interrelated disorders with a diverse range of phenotypes, caused by mutations in genes from the RAS/MAPK pathway. This approach was used not only to represent known pathways, but also to identify potential novel gene candidates associated with RASopathies, including Noonan and Costello syndrome. HLC implementations are available in the CDLIB library (https://github.com/GiulioRossetti/cdlib), and at https://github.com/jimrperkins/linkcomm for Python and R, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信